导航:首页 > 源码编译 > 椭圆曲线加密算法采用哪些技术

椭圆曲线加密算法采用哪些技术

发布时间:2025-06-06 11:34:02

‘壹’ 椭圆曲线加密算法

椭圆曲线加密算法,即:Elliptic Curve Cryptography,简称ECC,是基于椭圆曲线数学理论实现的一种非对称加密算法。相比RSA,ECC优势是可以使用更短的密钥,来实现与RSA相当或更高的安全。据研究,160位ECC加密安全性相当于1024位RSA加密,210位ECC加密安全性相当于2048位RSA加密。

椭圆曲线在密码学中的使用,是1985年由Neal Koblitz和Victor Miller分别独立提出的。

一般情况下,椭圆曲线可用下列方程式来表示,其中a,b,c,d为系数。

例如,当a=1,b=0,c=-2,d=4时,所得到的椭圆曲线为:

该椭圆曲线E的图像如图X-1所示,可以看出根本就不是椭圆形。

过曲线上的两点A、B画一条直线,找到直线与椭圆曲线的交点,交点关于x轴对称位置的点,定义为A+B,即为加法。如下图所示:A + B = C

上述方法无法解释A + A,即两点重合的情况。因此在这种情况下,将椭圆曲线在A点的切线,与椭圆曲线的交点,交点关于x轴对称位置的点,定义为A + A,即2A,即为二倍运算。

将A关于x轴对称位置的点定义为-A,即椭圆曲线的正负取反运算。如下图所示:

如果将A与-A相加,过A与-A的直线平行于y轴,可以认为直线与椭圆曲线相交于无穷远点。

综上,定义了A+B、2A运算,因此给定椭圆曲线的某一点G,可以求出2G、3G(即G + 2G)、4G......。即:当给定G点时,已知x,求xG点并不困难。反之,已知xG点,求x则非常困难。此即为椭圆曲线加密算法背后的数学原理。

椭圆曲线要形成一条光滑的曲线,要求x,y取值均为实数,即实数域上的椭圆曲线。但椭圆曲线加密算法,并非使用实数域,而是使用有限域。按数论定义,有限域GF(p)指给定某个质数p,由0、1、2......p-1共p个元素组成的整数集合中定义的加减乘除运算。

假设椭圆曲线为y² = x³ + x + 1,其在有限域GF(23)上时,写作:y² ≡ x³ + x + 1 (mod 23)

此时,椭圆曲线不再是一条光滑曲线,而是一些不连续的点,如下图所示。以点(1,7)为例,7² ≡ 1³ + 1 + 1 ≡ 3 (mod 23)。如此还有如下点:

(0,1) (0,22)(1,7) (1,16)(3,10) (3,13)(4,0)(5,4) (5,19)(6,4) (6,19)(7,11) (7,12)(9,7) (9,16)(11,3) (11,20)等等。

另外,如果P(x,y)为椭圆曲线上的点,则-P即(x,-y)也为椭圆曲线上的点。如点P(0,1),-P=(0,-1)=(0,22)也为椭圆曲线上的点。

相关公式如下:有限域GF(p)上的椭圆曲线y² = x³ + ax + b,若P(Xp, Yp), Q(Xq, Yq),且P≠-Q,则R(Xr,Yr) = P+Q 由如下规则确定:

Xr = (λ² - Xp - Xq) mod pYr = (λ(Xp - Xr) - Yp) mod p其中λ = (Yq - Yp)/(Xq - Xp) mod p(若P≠Q), λ = (3Xp² + a)/2Yp mod p(若P=Q)

因此,有限域GF(23)上的椭圆曲线y² ≡ x³ + x + 1 (mod 23),假设以(0,1)为G点,计算2G、3G、4G...xG等等,方法如下:

计算2G:λ = (3x0² + 1)/2x1 mod 23 = (1/2) mod 23 = 12Xr = (12² - 0 - 0) mod 23 = 6Yr = (12(0 - 6) - 1) mod 23 = 19即2G为点(6,19)

计算3G:3G = G + 2G,即(0,1) + (6,19)λ = (19 - 1)/(6 - 0) mod 23 = 3Xr = (3² - 0 - 6) mod 23 = 3Yr = (3(0 - 3) - 1) mod 23 = 13即3G为点(3, 13)

建立基于椭圆曲线的加密机制,需要找到类似RSA质因子分解或其他求离散对数这样的难题。而椭圆曲线上的已知G和xG求x,是非常困难的,此即为椭圆曲线上的的离散对数问题。此处x即为私钥,xG即为公钥。

椭圆曲线加密算法原理如下:

设私钥、公钥分别为k、K,即K = kG,其中G为G点。

公钥加密:选择随机数r,将消息M生成密文C,该密文是一个点对,即:C = {rG, M+rK},其中K为公钥

私钥解密:M + rK - k(rG) = M + r(kG) - k(rG) = M其中k、K分别为私钥、公钥。

椭圆曲线签名算法,即ECDSA。设私钥、公钥分别为k、K,即K = kG,其中G为G点。

私钥签名:1、选择随机数r,计算点rG(x, y)。2、根据随机数r、消息M的哈希h、私钥k,计算s = (h + kx)/r。3、将消息M、和签名{rG, s}发给接收方。

公钥验证签名:1、接收方收到消息M、以及签名{rG=(x,y), s}。2、根据消息求哈希h。3、使用发送方公钥K计算:hG/s + xK/s,并与rG比较,如相等即验签成功。

原理如下:hG/s + xK/s = hG/s + x(kG)/s = (h+xk)G/s= r(h+xk)G / (h+kx) = rG

假设要签名的消息是一个字符串:“Hello World!”。DSA签名的第一个步骤是对待签名的消息生成一个消息摘要。不同的签名算法使用不同的消息摘要算法。而ECDSA256使用SHA256生成256比特的摘要。
摘要生成结束后,应用签名算法对摘要进行签名:
产生一个随机数k
利用随机数k,计算出两个大数r和s。将r和s拼在一起就构成了对消息摘要的签名。
这里需要注意的是,因为随机数k的存在,对于同一条消息,使用同一个算法,产生的签名是不一样的。从函数的角度来理解,签名函数对同样的输入会产生不同的输出。因为函数内部会将随机值混入签名的过程。

关于验证过程,这里不讨论它的算法细节。从宏观上看,消息的接收方从签名中分离出r和s,然后利用公开的密钥信息和s计算出r。如果计算出的r和接收到的r值相同,则表示验证成功。否则,表示验证失败。

‘贰’ ECC椭圆曲线加密算法:介绍

ECC椭圆曲线加密算法是一种基于椭圆曲线数学结构的公钥加密技术,它在现代安全协议中发挥着核心作用。以下是关于ECC椭圆曲线加密算法的详细介绍:

  1. 基本概念

    • ECC算法包括ECC、ECDH和ECDSA,它们共同构成了Web和IT世界的基础,特别是在TLS、PGP和SSH等安全协议中。
  2. 安全性与效率优势

    • 与传统基于RSA、DSA和DH的公钥加密相比,ECC在相同安全水平下提供了更小的密钥尺寸和更高的计算效率。这意味着ECC可以在保持高安全性的同时,减少资源消耗和加速加密操作。
  3. 数学原理

    • ECC的安全性基于椭圆曲线上的离散对数问题,这是一个被认为在计算上非常困难的问题。具体来说,给定椭圆曲线上的一个点P和一个标量n,计算nP是容易的;但反过来,给定nP和P,要找到n是非常困难的。这种困难性保证了ECC的安全性。
  4. 应用广泛

    • ECC不仅在传统的网络安全协议中发挥着重要作用,还在比特币和其他加密货币的交易中被广泛应用。由于其高效性和安全性,ECC成为了现代加密技术中不可或缺的一部分。
  5. 学习基础

    • 要深入理解ECC,需要具备一定的数学基础,包括集合论、几何和模运算的基础知识,以及对称和非对称加密算法的基本概念。同时,了解简单与困难问题在加密中的角色也是非常重要的。

综上所述,ECC椭圆曲线加密算法以其高效性和安全性在现代加密技术中占据了重要地位,是保障网络安全和数据安全的重要手段之一。

‘叁’ 椭圆曲线加密算法原理

椭圆曲线加密算法,简称ECC,是基于椭圆曲线数学理论实现的一种非对称加密毁核算法。

相比RSA,ECC优势是可以使用更短的密钥,来实现与RSA相当或更高的安全,RSA加密算法也是纯扰一种非对称加密算法,在公开密钥加密和电子商业中RSA被广泛使用。据研究,160位ECC加密安全性相当于1024位RSA加密,210位ECC加密安全性相当于2048位做余旦RSA加密(有待考证)。

椭圆曲线也可以有运算,像实数的加减乘除一样,这就需要使用到加群。19世纪挪威的尼尔斯·阿贝尔抽象出了加群(又叫阿贝尔群或交换群)。数学中的群是一个集合,我们为它定义了一个“加法”,并用符号+表示。假定群用 表示,则加法必须遵循以下四个特性:

阅读全文

与椭圆曲线加密算法采用哪些技术相关的资料

热点内容
松下php研究所 浏览:161
c回调java 浏览:391
梦幻端游长安地图互通源码 浏览:737
电脑本地文件如何上传服务器 浏览:304
单片机晶振不好怎么办 浏览:572
安卓时时监控源码 浏览:937
如何发布网站到服务器上 浏览:670
解压涂色画图片 浏览:788
远程服务器的ip地址是什么 浏览:624
php通信加密 浏览:819
nginx配置php站点 浏览:451
手机怎么给图片加密 浏览:261
generatorjava 浏览:119
绝地求生未来之役安卓怎么卡画质 浏览:971
3针加密4针防尘网材质 浏览:291
单片机所有程序解释 浏览:571
php写入xml 浏览:974
daemon命令行错误 浏览:569
php判断是否为中文 浏览:343
活塞压缩机喷油 浏览:101