㈠ 什么是遗传算法
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。
对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:
遗传算法式中x为决策
变量,式2-1为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。
遗传算法的基本运算过程如下:
a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。
b)个体评价:计算群体P(t)中各个个体的适应度。
c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。
d)交叉运算:将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。
e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。
群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。
f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
㈡ 遗传算法的运算过程
遗传操作是模拟生物基因遗传的做法。在遗传算法中,通过编码组成初始群体后,遗传操作的任务就是对群体的个体按照它们对环境适应度(适应度评估)施加一定的操作,从而实现优胜劣汰的进化过程。从优化搜索的角度而言,遗传操作可使问题的解,一代又一代地优化,并逼近最优解。
遗传操作包括以下三个基本遗传算子(genetic operator):选择(selection);交叉(crossover);变异(mutation)。这三个遗传算子有如下特点:
个体遗传算子的操作都是在随机扰动情况下进行的。因此,群体中个体向最优解迁移的规则是随机的。需要强调的是,这种随机化操作和传统的随机搜索方法是有区别的。遗传操作进行的高效有向的搜索而不是如一般随机搜索方法所进行的无向搜索。
遗传操作的效果和上述三个遗传算子所取的操作概率,编码方法,群体大小,初始群体以及适应度函数的设定密切相关。 从群体中选择优胜的个体,淘汰劣质个体的操作叫选择。选择算子有时又称为再生算子(reproction operator)。选择的目的是把优化的个体(或解)直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的,目前常用的选择算子有以下几种:适应度比例方法、随机遍历抽样法、局部选择法。
其中轮盘赌选择法 (roulette wheel selection)是最简单也是最常用的选择方法。在该方法中,各个个体的选择概率和其适应度值成比例。设群体大小为n,其中个体i的适应度为,则i 被选择的概率,为遗传算法
显然,概率反映了个体i的适应度在整个群体的个体适应度总和中所占的比例。个体适应度越大。其被选择的概率就越高、反之亦然。计算出群体中各个个体的选择概率后,为了选择交配个体,需要进行多轮选择。每一轮产生一个[0,1]之间均匀随机数,将该随机数作为选择指针来确定被选个体。个体被选后,可随机地组成交配对,以供后面的交叉操作。 在自然界生物进化过程中起核心作用的是生物遗传基因的重组(加上变异)。同样,遗传算法中起核心作用的是遗传操作的交叉算子。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。通过交叉,遗传算法的搜索能力得以飞跃提高。
交叉算子根据交叉率将种群中的两个个体随机地交换某些基因,能够产生新的基因组合,期望将有益基因组合在一起。根据编码表示方法的不同,可以有以下的算法:
a)实值重组(real valued recombination)
1)离散重组(discrete recombination)
2)中间重组(intermediate recombination)
3)线性重组(linear recombination)
4)扩展线性重组(extended linear recombination)。
b)二进制交叉(binary valued crossover)
1)单点交叉(single-point crossover)
2)多点交叉(multiple-point crossover)
3)均匀交叉(uniform crossover)
4)洗牌交叉(shuffle crossover)
5)缩小代理交叉(crossover with reced surrogate)。
最常用的交叉算子为单点交叉(one-point crossover)。具体操作是:在个体串中随机设定一个交叉点,实行交叉时,该点前或后的两个个体的部分结构进行互换,并生成两个新个体。下面给出了单点交叉的一个例子:
个体A:1 0 0 1 ↑1 1 1 → 1 0 0 1 0 0 0 新个体
个体B:0 0 1 1 ↑0 0 0 → 0 0 1 1 1 1 1 新个体 变异算子的基本内容是对群体中的个体串的某些基因座上的基因值作变动。依据个体编码表示方法的不同,可以有以下的算法:
a)实值变异
b)二进制变异。
一般来说,变异算子操作的基本步骤如下:
a)对群中所有个体以事先设定的变异概率判断是否进行变异
b)对进行变异的个体随机选择变异位进行变异。
遗传算法引入变异的目的有两个:一是使遗传算法具有局部的随机搜索能力。当遗传算法通过交叉算子已接近最优解邻域时,利用变异算子的这种局部随机搜索能力可以加速向最优解收敛。显然,此种情况下的变异概率应取较小值,否则接近最优解的积木块会因变异而遭到破坏。二是使遗传算法可维持群体多样性,以防止出现未成熟收敛现象。此时收敛概率应取较大值。
遗传算法中,交叉算子因其全局搜索能力而作为主要算子,变异算子因其局部搜索能力而作为辅助算子。遗传算法通过交叉和变异这对相互配合又相互竞争的操作而使其具备兼顾全局和局部的均衡搜索能力。所谓相互配合.是指当群体在进化中陷于搜索空间中某个超平面而仅靠交叉不能摆脱时,通过变异操作可有助于这种摆脱。所谓相互竞争,是指当通过交叉已形成所期望的积木块时,变异操作有可能破坏这些积木块。如何有效地配合使用交叉和变异操作,是目前遗传算法的一个重要研究内容。
基本变异算子是指对群体中的个体码串随机挑选一个或多个基因座并对这些基因座的基因值做变动(以变异概率P.做变动),(0,1)二值码串中的基本变异操作如下:
基因位下方标有*号的基因发生变异。
变异率的选取一般受种群大小、染色体长度等因素的影响,通常选取很小的值,一般取0.001-0.1。 当最优个体的适应度达到给定的阈值,或者最优个体的适应度和群体适应度不再上升时,或者迭代次数达到预设的代数时,算法终止。预设的代数一般设置为100-500代。
㈢ 遗传算法选中次数怎么算
遗传算法选中次数算法如下:
1、在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T。
2、随机产生U中的N个个体s1, s2, sN,组成初始种群S={s1, s2, sN},置代数计数器t=1。
3、计算S中每个个体的适应度f() 。
4、若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。
5、按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1。
6、按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2。
7、按变异率Pm所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3。
8、将群体S3作为新一代种群,即用S3代替S,t=t+1,转步3。
相关基本概念:
1、个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼,一个个体也就是搜索空间中的一个点。
2、种群就是模拟生物种群而由若干个体组成的群体, 它一般是整个搜索空间的一个很小的子集。
3、适应度(fitness)就是借鉴生物个体对环境的 适应程度,而对问题中的个体对象所设计的 表征其优劣的一种测度。
4、适应度函数(fitness function)就是问题中的 全体个体与其适应度之间的一个对应关系。 它一般是一个实值函数。该函数就是遗传算 法中指导搜索的评价函数。
㈣ 基本遗传算法介绍
遗传算法是群智能优化计算中应用最为广泛、最为成功、最具代表性的智能优化方法。它是以达尔文的生物进化论和孟德尔的遗传变异理论为基础,模拟生物进化过程和机制,产生的一种群体导向随机搜索技术和方法。
遗传算法的基本思想:首先根据待求解优化问题的目标函数构造一个适应度函数。然后,按照一定的规则生成经过基因编码的初始群体,对群体进行评价、遗传运算(交叉和变异)、选择等操作。经过多次进化,获得适应度最高的一个或几个最优个体作为问题的最优解。
编码是对问题的可行解的遗传表示,是影响算法执行效率的关键因素的之一。遗传算法中,一个解 称为个体或染色体(chromosome),染色体由被称为基因(gene)的离散单元组成,每个基因控制颜色体的一个或多个特性,通常采用固定长度的0-1二进制编码,每个解对应一个唯一的二进制编码串编码空间中的二进制位串称为基因型(genotype)。而实际所表示问题的解空间的对应点称为表现型(phenotype)。
种群由个体构成,每个个体的染色体对应优化问题的一个初始解。
适应度函数是评价种群中个体对环境适应能力的唯一确定性指标,体现出“适者生存,优胜劣汰”这一自然选择原则。
遗传算法在每次迭代过程中,在父代种群中采用某种选择策略选择出指定数目的哥特体提进行遗传操作。最常用的选择策略是正比选择(proportional selection)策略。
在 交叉算子中,通常由两个被称为父代(parent)的染色体组合,形成新的染色体,称为子代(offspring)。父代是在种群中根据个体适应度进行选择,因此适应度较高的染色体的基因更有可能被遗传到下一代 。通过在迭代过程中不断地应用交叉算子,使优良个体的基因得以在种群中频繁出现,最终使得整个种群收敛到一个最优解。
在染色体交叉之后产生的子代个体,其基因位可能以很小的概率发生转变,这个过程称为变异。变异是为了增强种群的多样性,将搜索跳出局部最优解。
遗传算法的停止准则一般采用设定最大迭代次数或适应值函数评估次数,也可以是规定的搜索精度。
已Holland的基本GA为例介绍算法等具体实现,具体的执行过程描述如下:
Step 1: 初始化 。随机生成含有 个个体的初始种群 ,每个个体经过编码对应着待求解优化问题的一个初始解。
Step 2: 计算适应值 。个体 ,由指定的适应度函数评价其适应环境的能力。不同的问题,适应度函数的构造方式也不同。对函数优化问题,通常取目标函数作为适应度函数。
Step 3: 选择 。根据某种策略从当前种群中选择出 个个体作为重新繁殖的下一代群体。选择的依据通常是个体的适应度的高低,适应度高的个体相比适应度低的个体为下一代贡献一个或多个后代的概率更大。选择过程提现了达尔文“适者生存”原则。
Step 4: 遗传操作 。在选出的 个个体中,以事件给定的杂交概率 任意选择出两个个体进行 交叉运算 ,产生两个新的个体,重复此过程直到所有要求杂交的个体杂交完毕。根据预先设定的变异概率 在 个个体中选择出若干个体,按一定的策略对选出的个体进行 变异运算 。
Step 5: 检验算法等停止条件 。若满足,则停止算法的执行,将最优个体的染色体进行解码得到所需要的最优解,否则转到 Step 2 继续进行迭代过程。