导航:首页 > 源码编译 > matlab遗传算法适应度函数

matlab遗传算法适应度函数

发布时间:2025-07-12 12:59:05

A. matlab用遗传算法解决TSP的问题,求帮助

把下面的(1)-(7)依次存成相应的.m文件,在(7)的m文件下运行就可以了
(1) 适应度函数fit.m
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+0.0001)).^m;
end
(2)个体距离计算函数 mylength.m
function len=myLength(D,p)
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end

end
(3)交叉操作函数 cross.m
function [A,B]=cross(A,B)
L=length(A);
if L<10
W=L;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10)+8;
else
W=floor(L/10)+8;
end
p=unidrnd(L-W+1);
fprintf('p=%d ',p);
for i=1:W
x=find(A==B(1,p+i-1));
y=find(B==A(1,p+i-1));
[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));
[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));
end

end
(4)对调函数 exchange.m
function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;

end
(5)变异函数 Mutation.m
function a=Mutation(A)
index1=0;index2=0;
nnper=randperm(size(A,2));
index1=nnper(1);
index2=nnper(2);
%fprintf('index1=%d ',index1);
%fprintf('index2=%d ',index2);

temp=0;
temp=A(index1);
A(index1)=A(index2);
A(index2)=temp;
a=A;
end
(6)连点画图函数 plot_route.m
function plot_route(a,R)
scatter(a(:,1),a(:,2),'rx');
hold on;
plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);
hold on;
for i=2:length(R)
x0=a(R(i-1),1);
y0=a(R(i-1),2);
x1=a(R(i),1);
y1=a(R(i),2);
xx=[x0,x1];
yy=[y0,y1];
plot(xx,yy);
hold on;
end

end
(7)主函数
clear;
clc;
%%%%%%%%%%%%%%%输入参数%%%%%%%%
N=50; %%城市的个数
M=100; %%种群的个数
C=100; %%迭代次数
C_old=C;
m=2; %%适应值归一化淘汰加速指数
Pc=0.4; %%交叉概率
Pmutation=0.2; %%变异概率
%%生成城市的坐标
pos=randn(N,2);
%%生成城市之间距离矩阵
D=zeros(N,N);
for i=1:N
for j=i+1:N
dis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2;
D(i,j)=dis^(0.5);
D(j,i)=D(i,j);
end
end
%%如果城市之间的距离矩阵已知,可以在下面赋值给D,否则就随机生成

%%生成初始群体
popm=zeros(M,N);
for i=1:M
popm(i,:)=randperm(N);
end
%%随机选择一个种群
R=popm(1,:);

figure(1);
scatter(pos(:,1),pos(:,2),'rx');
axis([-3 3 -3 3]);
figure(2);
plot_route(pos,R); %%画出种群各城市之间的连线
axis([-3 3 -3 3]);
%%初始化种群及其适应函数
fitness=zeros(M,1);
len=zeros(M,1);
for i=1:M
len(i,1)=myLength(D,popm(i,:));
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
R=popm(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
fitness=fitness/sum(fitness);

distance_min=zeros(C+1,1); %%各次迭代的最小的种群的距离
while C>=0
fprintf('迭代第%d次\n',C);
%%选择操作
nn=0;
for i=1:size(popm,1)
len_1(i,1)=myLength(D,popm(i,:));
jc=rand*0.3;
for j=1:size(popm,1)
if fitness(j,1)>=jc
nn=nn+1;
popm_sel(nn,:)=popm(j,:);
break;
end
end
end
%%每次选择都保存最优的种群
popm_sel=popm_sel(1:nn,:);
[len_m len_index]=min(len_1);
popm_sel=[popm_sel;popm(len_index,:)];

%%交叉操作
nnper=randperm(nn);
A=popm_sel(nnper(1),:);
B=popm_sel(nnper(2),:);
for i=1:nn*Pc
[A,B]=cross(A,B);
popm_sel(nnper(1),:)=A;
popm_sel(nnper(2),:)=B;
end
%%变异操作
for i=1:nn
pick=rand;
while pick==0
pick=rand;
end
if pick<=Pmutation
popm_sel(i,:)=Mutation(popm_sel(i,:));
end
end
%%求适应度函数
NN=size(popm_sel,1);
len=zeros(NN,1);
for i=1:NN
len(i,1)=myLength(D,popm_sel(i,:));
end
maxlen=max(len);
minlen=min(len);
distance_min(C+1,1)=minlen;
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
fprintf('minlen=%d\n',minlen);
R=popm_sel(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
popm=[];
popm=popm_sel;
C=C-1;
%pause(1);
end
figure(3)
plot_route(pos,R);
axis([-3 3 -3 3]);

B. MATLAB如何使用ga遗传算法工具箱进行优化

1、首先,打开MATLAB软件。
2、设置一个m文件,用于计算个体的适应度函数输出值一个适应度,输入是我们要优化的参数;例如:要优化的参数(x ,y ,z)则适应度函数的基本结构应是v=function(x, y, z)。
3、输入“gatool”指令打开工具箱,如图所示。
4、如图所示,打开的ga工具箱界面。
5、输入我们的适应度函数,和要优化的个数,和一些其它设置,要根据我们的任务决定;例如:适应度函数为:v=function(x, y, z)时要配置适应度函数项为@function。
6、要优化的参数个数为3。左后单击“start”开始,等待一段时间就会出现我们要优化的参数。

阅读全文

与matlab遗传算法适应度函数相关的资料

热点内容
什么java编译器支持中文 浏览:563
香港服务器如何做代理 浏览:201
pdf写入 浏览:986
高尔夫电台怎么添加到文件夹 浏览:239
四川麻将一般下哪个app 浏览:864
反编译exe脚本 浏览:462
源码文件夹怎么编译到固件中 浏览:912
ERp打印服务器错误怎么弄 浏览:113
蚌端口u盘加密软件有哪些 浏览:180
前端如何认证服务器 浏览:556
linux切换db2用户命令 浏览:308
相片如何用电解压 浏览:908
硕士程序员去学校当老师 浏览:122
pythonstr提取到字典 浏览:820
程序员那么可爱有人看上陆漓了 浏览:878
php正则提取图片 浏览:105
pythonlinuxdjango 浏览:564
php中文返回乱码 浏览:91
宿舍装的电信怎么加密 浏览:747
为什么压缩文件解压后变少了 浏览:428