‘壹’ 关于TLD目标跟踪算法的问题
跟踪是一个很混乱的方向。
比如TLD、CT、Struct这些效果不错的Tracker其实都不是单纯的Tracker了。09年的时候我记得比较流行的是Particle Filtering, 或者一些MeanShift/CamShift的变形,比如特征变了,比如对问题的假设变了。
后来突然出现一些tracking by detection的方法,之前的很多朋友就觉得这是耍流氓。比如TLD,严格的跟踪算法也许只是里面的Forward/Backward Opitcal Flow的部分,但是效果很Impressive,所以不管怎样,一下就火了。
之后所谓的跟踪就不再是一个传统的跟踪问题,而是一个综合的工程问题。online learning,random projection ,sparse learning的东西都加进来,大家其实到底是在做跟踪还是在做检测或者online learning,其实已经不重要,因为衡量的标准是你在某些public dataset上的精度。
但这些对实际的项目有没有帮助呢?
这是个很有意思的地方,在很多时候,我们之所以需要跟踪算法,是因为我们的检测算法很慢,跟踪很快。基本上当前排名前几的跟踪算法都很难用在这样的情况下,因为你实际的速度已经太慢了,比如TLD,CT,还有Struct,如果目标超过十个,基本上就炸了。况且还有些跟踪算法自己drift掉了也不知道,比如第一版本的CT是无法处理drift的问题的,TLD是可以的,究其原因还是因为检测算法比较鲁棒啊……
实际中我觉得速度极快,实现也简单的纯跟踪算法居然是NCC和Overlap。
NCC很简单,这个是对点进行的,对于区域也有很多变种,网上有一些相关的资源。
Overlap是我取的名字,一般用在里面,假如你的摄像头是静止的,背景建模之后出来的前景可以是一个一个的blob,对相邻两帧的blob检测是否Overlap就可以得到track。在一些真实场景下,这个算法是非常有效的。关于背景template的问题在真实的里面也是很好解决的。
坐在电脑前面调试代码tuning 各种阈值让跟踪算法在某一个帧下面不要drift的事情我是再也不想干了。
顺祝你2015幸福快乐。
‘贰’ TLD的介绍
TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek Kalal在其攻读博士学位期间提出的一种新的单目标长时间跟踪(long term tracking)算法。该算法与传统跟踪算法的显着区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变、部分遮挡等问题。同时,通过一种改进的在线学习机制不断更新跟踪模块的“显着特征点”和检测模块的目标模型及相关参数,从而使得跟踪效果更加稳定、可靠。
‘叁’ 计算机视觉中,目前有哪些经典的目标跟踪算法
跟踪是一个很混乱的方向。
比如TLD、CT、Struct这些效果不错的Tracker其实都不是单纯的Tracker了。09年的时候我记得比较流行的是Particle Filtering, 或者一些MeanShift/CamShift的变形,比如特征变了,比如对问题的假设变了。
后来突然出现一些tracking by detection的方法,之前的很多朋友就觉得这是耍流氓。比如TLD,严格的跟踪算法也许只是里面的Forward/Backward Opitcal Flow的部分,但是效果很Impressive,所以不管怎样,一下就火了。
之后所谓的跟踪就不再是一个传统的跟踪问题,而是一个综合的工程问题。online learning,random projection ,sparse learning的东西都加进来,大家其实到底是在做跟踪还是在做检测或者online learning,其实已经不重要,因为衡量的标准是你在某些public dataset上的精度。
但这些对实际的项目有没有帮助呢?
这是个很有意思的地方,在很多时候,我们之所以需要跟踪算法,是因为我们的检测算法很慢,跟踪很快。基本上当前排名前几的跟踪算法都很难用在这样的情况下,因为你实际的速度已经太慢了,比如TLD,CT,还有Struct,如果目标超过十个,基本上就炸了。况且还有些跟踪算法自己drift掉了也不知道,比如第一版本的CT是无法处理drift的问题的,TLD是可以的,究其原因还是因为检测算法比较鲁棒啊……
实际中我觉得速度极快,实现也简单的纯跟踪算法居然是NCC和Overlap。
NCC很简单,这个是对点进行的,对于区域也有很多变种,网上有一些相关的资源。
Overlap是我取的名字,一般用在视频里面,假如你的摄像头是静止的,背景建模之后出来的前景可以是一个一个的blob,对相邻两帧的blob检测是否Overlap就可以得到track。在一些真实场景下,这个算法是非常有效的。关于背景template的问题在真实的视频里面也是很好解决的。
坐在电脑前面调试代码tuning 各种阈值让跟踪算法在某一个视频帧下面不要drift的事情我是再也不想干了。
顺祝你2015幸福快乐。
‘肆’ 车辆检测与跟踪 用Vibe算法提取前景后,再用均值漂移跟踪 行得通吗
kalman只是一个预测方法(预测物体下一帧的可能位置), 一般后面要有一个其他方法在预测区域内进行搜索验证, 比如先用kalman预测,再用mean-shift在预测区域内搜索, 这两步骤在一起完成跟踪过程.
至于速度问题, mean-shift, KLT, template match都可以很快, 当然效果上各有优缺点, 似乎TLD也早就做到了实时
‘伍’ 德云系:扩展模块的目标跟踪算法有哪些
你好,分为了以下四种:
1. KCF:TrackerKCF 使用目标周围区域的循环矩阵采集正负样本,利用脊回归训练目标检测器,并成功的利用循环矩阵在傅里叶空间可对角化的性质将矩阵的运算转化为向量的Hadamad积,即元素的点乘,大大降低了运算量,提高了运算速度,使算法满足实时性要求.
2.MIL:TrackerMIL 以在线方式训练分类器将对象与背景分离;多实例学习避免鲁棒跟踪的漂移问题
3. OLB:TrackerBoosting 基于AdaBoost算法的在线实时对象跟踪.分类器在更新步骤中使用周围背景作为反例以避免漂移问题.
4.MedianFlow:TrackerMedianFlow 跟踪器适用于非常平滑和可预测的运动,物体在整个序列中可见.
5.TLD:TrackerTLD 将长期跟踪任务分解为跟踪,学习和检测.跟踪器在帧之间跟踪对象.探测器本地化所观察到的所有外观,并在必要时纠正跟踪器.学习估计检测器的错误并进行更新以避免再出现这些错误.追踪器能够处理快速运动,部分遮挡,物体缺失等情况.