导航:首页 > 源码编译 > 凸包问题的分治算法

凸包问题的分治算法

发布时间:2025-08-09 16:53:32

1. noip复赛会考哪些类型的题目该如何复习

【模拟】高精度加、减、乘

【图论】图的表示:邻接矩阵,邻接表,边表
传递闭包和floyd
最小生成树算法(至少会一种)
单源最短路dijkstra(O(n2))或者bellman(spfa优化,O(km))
拓扑排序

【树】 树的先序、中序、后序遍历
树中的最长路(两遍bfs或者dfs)
并查集
【搜索】深搜、宽搜
【排序】冒泡排序、快速排序 选择排序 记数排序(又称“桶排”)
【动态规划】
01背包,无限背包
【数论】
最大公约数和最小公倍数,进制转换

【模拟】
表达式求值(中缀转后缀,栈的操作)、前缀表达式、中缀表达式、后缀表达式之间的相互转化
【树】线段树 字母树
【搜索】迭代深搜
【动态规划】
树形动态规划、最长不下降子序列、最长公共子序列和最长公共子串
【排序】归并排序、堆排序

【串】 KMP(字串匹配)
【数论】 判断质数(sqrt式与筛法求素数)
【有序表】顺序表、链表、线段树及其基本操作
【图论】
Dijkstra算法的堆优化、求割点、求割边、强连通分量、欧拉路(边一次)、汉密尔顿回路(点一次)、差分约束系统
【动态规划】
状态压缩的动态规划
【分治】二分查找、二分答案、最近点对
【树】 归并树(逆序对)
【其他】
Hash、矩形切割(与线段树的比较)
【数论】欧拉函数
【几何】线段相交
【有序表】树状数组
【树】 Lca(最近公共祖先)与rmq(区间最值)

【图论】匹配算法(最大匹配,最小点覆盖,最小路径覆盖,最大独立集)
网络流算法(最大流dinic,最小费用流spfa)
【动态规划】动态规划的优化(快速幂,改变状态,优化转移,单调性,四边形不等式)
【串】 Kmp扩展、AC自动机
【数论】 中国剩余定理、概率与期望
【几何】 最远点对(旋转卡壳) 、凸包(水平序和极角序)
、半平面交
【有序表】平衡树(sbt、treap、splay)后缀数组
【其他】随机化算法、高斯消元

2. acm竞赛的算法总共有那些范围 求大牛概括......

初级:
一.基本算法:
(1)枚举. (poj1753,poj2965)
(2)贪心(poj1328,poj2109,poj2586)
(3)递归和分治法.
(4)递推.
(5)构造法.(poj3295)
(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.图算法:
(1)图的深度优先遍历和广度优先遍历.
(2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
(3)最小生成树算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓扑排序 (poj1094)
(5)二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)
(6)最大流的增广路算法(KM算法). (poj1459,poj3436)
三.数据结构.
(1)串 (poj1035,poj3080,poj1936)
(2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)
(3)简单并查集的应用.
(4)哈希表和二分查找等高效查找法(数的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼树(poj3253)
(6)堆
(7)trie树(静态建树、动态建树) (poj2513)
四.简单搜索
(1)深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.动态规划
(1)背包问题. (poj1837,poj1276)
(2)型如下表的简单DP(可参考lrj的书 page149):
1.E[j]=opt{D[i]+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列)
(poj3176,poj1080,poj1159)
3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)
六.数学
(1)组合数学:
1.加法原理和乘法原理.
2.排列组合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
(2)数论.
1.素数与整除问题
2.进制位.
3.同余模运算.
(poj2635, poj3292,poj1845,poj2115)
(3)计算方法.
1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)
七.计算几何学.
(1)几何公式.
(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)
(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
(4)凸包. (poj2187,poj1113)

3. 点集的Delaunay三角剖分方法

3.2.1.1 基本理论

B.Delaunay于1934年提出了Delaunay三角网格的概念,它是Voronoi图(简称V图)的几何对偶图,具有严格的数学定义和完备的理论基础。

图3.1 Voronoi图(虚线)及对应的Delaunay三角剖分(实线)

3.2.1.1.1 Voronoi图

假设V={v1,v2,…,vN},N≥3是欧几里得平面上的一个点集,并且这些点不共线,四点不共圆。用d(vi,vj)表示点vi与vj间的欧几里得距离。

设x为平面上的点,则:

区域V(i)={x∈E2d(x,vi)≤d(x,vj),j=1,2,…,N,j≠i}称为Voronoi多边形,也称为该点的邻域。点集中所有点的Voronoi多边形组成Voronoi图,如图3.1所示。

平面上的Voronoi图可以看做是点集V中的每个点作为生长核,以相同的速率向外扩张,直到彼此相遇为止而在平面上形成的图形。除最外层的点形成开放的区域外,其余每个点都形成一个凸多边形。

3.2.1.1.2 Delaunay三角剖分

Delaunay三角形网格为V图的几何对偶图。在二维平面中,点集中若无四点共圆,则该点集V图中每个顶点恰好是3个边的公共顶点,并且是3个Voronoi多边形的公共顶点;上述3个Voronoi多边形所对应的点集中的点连成的三角形称为与该Voronoi顶点对应的Delaunay三角形,如图3.1所示。如果一个二维点集中有四点共圆的情况,此时,这些点对应的Voronoi多边形共用一个Voronoi顶点,这个公共的Voronoi顶点对应多于3个Voronoi多边形,也就是对应于点集中多于3个的点;这些点可以连成多于一个的三角形。此时,可以任意将上述几个点形成的凸包划分为若干三角形,这些三角形也称为和这个Voronoi顶点对应的Delaunay三角形。

所有与Voronoi顶点对应的Delaunay三角形就构成了Delaunay三角剖分。当无退化情况(四点共圆)出现时,点集的Delaunay三角剖分是唯一的。

3.2.1.1.3 Delaunay三角剖分的特性

Delaunay三角剖分具有两个重要特性:

(1)最小角最大化特性:即要求三角形的最小内角尽量最大,具体地说是指在两个相邻的三角形构成凸四边形的对角线,在相互交换后,6个内角的最小角不再增大,并且使三角形尽量接近等边。

(2)空外接圆特性:即三角形的外接圆中不包含其他三角形的顶点(任意四点不能共圆),该特性保证了最邻近的点构成三角形,使三角形的边长之和尽量最小。

3.2.1.2 常用算法

Delaunay三角剖分方法是目前最流行的通用的全自动网格生成方法之一。比较有效的Delaunay三角剖分算法有分治算法、逐点插入法和三角网生长法等(Tsai,1993),其中逐点插入法由于其算法的简洁性且易于实现,因而获得广泛的应用。其主要思路是先构建一个包含点集或区域的初始网格,再依次向初始网格中插入点,最后形成Delaunay三角剖分。

采用逐点插入法建立Delaunay三角网的算法思想最初是由Lawson于1977年提出的(Lawson,1977),Bowyer和Watson等先后对该算法进行了发展和完善(Bowyer,1981;Watson,1981)。目前涌现出的大量逐点插入法中,主要为以Lawson算法代表的对角线交换算法和以Bowyer-Watson算法代表的空外接圆法。

3.2.1.2.1 Lawson算法

Lawson算法的主要思想是将要插入的数据点逐一插入到一个已存在的Delaunay三角网内,然后再用局部优化算法(Local Optimization Procere,LOP)优化使其满足Delau-nay三角网的要求,其主要步骤如下:

图3.7 Bowyer-Watson算法剖分实例

4. 程序员必须掌握哪些算法

一.基本算法:

枚举. (poj1753,poj2965)

贪心(poj1328,poj2109,poj2586)

递归和分治法.

递推.

构造法.(poj3295)

模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)

二.图算法:

图的深度优先遍历和广度优先遍历.

最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
最小生成树算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
拓扑排序 (poj1094)

二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)

最大流的增广路算法(KM算法). (poj1459,poj3436)

三.数据结构.

串 (poj1035,poj3080,poj1936)

排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)

简单并查集的应用.

哈希表和二分查找等高效查找法(数的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
哈夫曼树(poj3253)



trie树(静态建树、动态建树) (poj2513)

四.简单搜索

深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)

广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)

简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)

五.动态规划

背包问题. (poj1837,poj1276)

型如下表的简单DP(可参考lrj的书 page149):
E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列) (poj3176,poj1080,poj1159)
C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)
六.数学

组合数学:
1.加法原理和乘法原理.
2.排列组合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
数论.
1.素数与整除问题
2.进制位.
3.同余模运算.
(poj2635, poj3292,poj1845,poj2115)
计算方法.
1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)
七.计算几何学.

几何公式.

叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)

多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
凸包. (poj2187,poj1113)

中级(校赛压轴及省赛中等难度):
一.基本算法:

C++的标准模版库的应用. (poj3096,poj3007)

较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)

二.图算法:

差分约束系统的建立和求解. (poj1201,poj2983)

最小费用最大流(poj2516,poj2516,poj2195)

双连通分量(poj2942)

强连通分支及其缩点.(poj2186)

图的割边和割点(poj3352)

最小割模型、网络流规约(poj3308)

三.数据结构.

线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)

静态二叉检索树. (poj2482,poj2352)

树状树组(poj1195,poj3321)

RMQ. (poj3264,poj3368)

并查集的高级应用. (poj1703,2492)

KMP算法. (poj1961,poj2406)

四.搜索

最优化剪枝和可行性剪枝

搜索的技巧和优化 (poj3411,poj1724)

记忆化搜索(poj3373,poj1691)

五.动态规划

较为复杂的动态规划(如动态规划解特别的旅行商TSP问题等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
记录状态的动态规划. (POJ3254,poj2411,poj1185)

树型动态规划(poj2057,poj1947,poj2486,poj3140)

六.数学

组合数学:
1.容斥原理.
2.抽屉原理.
3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).
4.递推关系和母函数.
数学.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率问题. (poj3071,poj3440)
3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)
计算方法.
1.0/1分数规划. (poj2976)
2.三分法求解单峰(单谷)的极值.
3.矩阵法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
随机化算法(poj3318,poj2454)
杂题(poj1870,poj3296,poj3286,poj1095)
七.计算几何学.

坐标离散化.

扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用)
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
多边形的内核(半平面交)(poj3130,poj3335)

几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)

高级(regional中等难度):
一.基本算法要求:

代码快速写成,精简但不失风格

(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)

保证正确性和高效性. poj3434

二.图算法:

度限制最小生成树和第K最短路. (poj1639)

最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
最优比率生成树. (poj2728)

最小树形图(poj3164)

次小生成树.

无向图、有向图的最小环

三.数据结构.

trie图的建立和应用. (poj2778)

LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和 在线算法(RMQ+dfs)).(poj1330)
双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的目的). (poj2823)
左偏树(可合并堆).

后缀树(非常有用的数据结构,也是赛区考题的热点).(poj3415,poj3294)
四.搜索

较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)

广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)

深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法. (poj3131,poj2870,poj2286)

五.动态规划

需要用数据结构优化的动态规划.(poj2754,poj3378,poj3017)
四边形不等式理论.

较难的状态DP(poj3133)

六.数学

组合数学.
1.MoBius反演(poj2888,poj2154)
2.偏序关系理论.
博奕论.
1.极大极小过程(poj3317,poj1085)
2.Nim问题.
七.计算几何学.

半平面求交(poj3384,poj2540)

可视图的建立(poj2966)

点集最小圆覆盖.

对踵点(poj2079)

5. 是的 计算机算法

计算机算法是以一步接一步的方式来详细描述计算机如何将输入转化为所要求的输出的过程,或者说,算法是对计算机上执行的计算过程的具体描述。
编辑本段算法性质一个算法必须具备以下性质: (1)算法首先必须是正确的,即对于任意的一组输入,包括合理的输入与不合理的输入,总能得到预期的输出。如果一个算法只是对合理的输入才能得到预期的输出,而在异常情况下却无法预料输出的结果,那么它就不是正确的。 (2)算法必须是由一系列具体步骤组成的,并且每一步都能够被计算机所理解和执行,而不是抽象和模糊的概念。 (3)每个步骤都有确定的执行顺序,即上一步在哪里,下一步是什么,都必须明确,无二义性。 (4)无论算法有多么复杂,都必须在有限步之后结束并终止运行,即算法的步骤必须是有限的。在任何情况下,算法都不能陷入无限循环中。 一个问题的解决方案可以有多种表达方式,但只有满足以上4个条件的解才能称之为算法。编辑本段重要算法A*搜寻算法
俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。
Beam Search
束搜索(beam search)方法是解决优化问题的一种启发式方法,它是在分枝定界方法基础上发展起来的,它使用启发式方法估计k个最好的路径,仅从这k个路径出发向下搜索,即每一层只有满意的结点会被保留,其它的结点则被永久抛弃,从而比分枝定界法能大大节省运行时间。束搜索于20 世纪70年代中期首先被应用于人工智能领域,1976 年Lowerre在其称为HARPY的语音识别系统中第一次使用了束搜索方法,他的目标是并行地搜索几个潜在的最优决策路径以减少回溯,并快速地获得一个解。
二分取中查找算法
一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。这种搜索算法每一次比较都使搜索范围缩小一半。
Branch and bound
分支定界(branch and bound)算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
数据压缩
数据压缩是通过减少计算机中所存储数据或者通信传播中数据的冗余度,达到增大数据密度,最终使数据的存储空间减少的技术。数据压缩在文件存储和分布式系统领域有着十分广泛的应用。数据压缩也代表着尺寸媒介容量的增大和网络带宽的扩展。
Diffie–Hellman密钥协商
Diffie–Hellman key exchange,简称“D–H”,是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。
Dijkstra’s 算法
迪科斯彻算法(Dijkstra)是由荷兰计算机科学家艾兹格·迪科斯彻(Edsger Wybe Dijkstra)发明的。算法解决的是有向图中单个源点到其他顶点的最短路径问题。举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离,迪科斯彻算法可以用来找到两个城市之间的最短路径。
动态规划
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。比较着名的应用实例有:求解最短路径问题,背包问题,项目管理,网络流优化等。这里也有一篇文章说得比较详细。
欧几里得算法
在数学中,辗转相除法,又称欧几里得算法,是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。
最大期望(EM)算法
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
快速傅里叶变换(FFT)
快速傅里叶变换(Fast Fourier Transform,FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。
哈希函数
HashFunction是一种从任何一种数据中创建小的数字“指纹”的方法。该函数将数据打乱混合,重新创建一个叫做散列值的指纹。散列值通常用来代表一个短的随机字母和数字组成的字符串。好的散列函数在输入域中很少出现散列冲突。在散列表和数据处理中,不抑制冲突来区别数据,会使得数据库记录更难找到。
堆排序
Heapsort是指利用堆积树(堆)这种数据结构所设计的一种排序算法。堆积树是一个近似完全二叉树的结构,并同时满足堆积属性:即子结点的键值或索引总是小于(或者大于)它的父结点。
归并排序
Merge sort是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
RANSAC 算法
RANSAC 是”RANdom SAmpleConsensus”的缩写。该算法是用于从一组观测数据中估计数学模型参数的迭代方法,由Fischler and Bolles在1981提出,它是一种非确定性算法,因为它只能以一定的概率得到合理的结果,随着迭代次数的增加,这种概率是增加的。该算法的基本假设是观测数据集中存在”inliers”(那些对模型参数估计起到支持作用的点)和”outliers”(不符合模型的点),并且这组观测数据受到噪声影响。RANSAC 假设给定一组”inliers”数据就能够得到最优的符合这组点的模型。
RSA加密算法
这是一个公钥加密算法,也是世界上第一个适合用来做签名的算法。今天的RSA已经专利失效,其被广泛地用于电子商务加密,大家都相信,只要密钥足够长,这个算法就会是安全的。
并查集Union-find
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。
Viterbi algorithm
寻找最可能的隐藏状态序列(Finding most probable sequence of hidden states)。编辑本段算法特点1.有穷性。一个算法应包含有限的操作步骤,而不能是无限的。事实上“有穷性”往往指“在合理的范围之内”。如果让计算机执行一个历时1000年才结束的算法,这虽然是有穷的,但超过了合理的限度,人们不把他是为有效算法。 2. 确定性。算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的。算法中的每一个步骤应当不致被解释成不同的含义,而应是十分明确的。也就是说,算法的含义应当是唯一的,而不应当产生“歧义性”。 3. 有零个或多个输入、所谓输入是指在执行算法是需要从外界取得必要的信息。 4. 有一个或多个输出。算法的目的是为了求解,没有输出的算法是没有意义的。 5.有效性。 算法中的每一个 步骤都应当能有效的执行。并得到确定的结果。编辑本段算法与程序虽然算法与计算机程序密切相关,但二者也存在区别:计算机程序是算法的一个实例,是将算法通过某种计算机语言表达出来的具体形式;同一个算法可以用任何一种计算机语言来表达。 算法列表 图论 路径问题 0/1边权最短路径 BFS 非负边权最短路径(Dijkstra) 可以用Dijkstra解决问题的特征 负边权最短路径 Bellman-Ford Bellman-Ford的Yen-氏优化 差分约束系统 Floyd 广义路径问题 传递闭包 极小极大距离 / 极大极小距离 Euler Path / Tour 圈套圈算法 混合图的 Euler Path / Tour Hamilton Path / Tour 特殊图的Hamilton Path / Tour 构造 生成树问题 最小生成树 第k小生成树 最优比率生成树 0/1分数规划 度限制生成树 连通性问题 强大的DFS算法 无向图连通性 割点 割边 二连通分支 有向图连通性 强连通分支 2-SAT 最小点基 有向无环图 拓扑排序 有向无环图与动态规划的关系 二分图匹配问题 一般图问题与二分图问题的转换思路 最大匹配 有向图的最小路径覆盖 0 / 1矩阵的最小覆盖 完备匹配 最优匹配 稳定婚姻 网络流问题 网络流模型的简单特征和与线性规划的关系 最大流最小割定理 最大流问题 有上下界的最大流问题 循环流 最小费用最大流 / 最大费用最大流 弦图的性质和判定 组合数学 解决组合数学问题时常用的思想 逼近 递推 / 动态规划 概率问题 Polya定理 计算几何 / 解析几何 计算几何的核心:叉积 / 面积 解析几何的主力:复数 基本形 点 直线,线段 多边形 凸多边形 / 凸包 凸包算法的引进,卷包裹法 Graham扫描法 水平序的引进,共线凸包的补丁 完美凸包算法 相关判定 两直线相交 两线段相交 点在任意多边形内的判定 点在凸多边形内的判定 经典问题 最小外接圆 近似O(n)的最小外接圆算法 点集直径 旋转卡壳,对踵点 多边形的三角剖分 数学 / 数论 最大公约数 Euclid算法 扩展的Euclid算法 同余方程 / 二元一次不定方程 同余方程组 线性方程组 高斯消元法 解mod 2域上的线性方程组 整系数方程组的精确解法 矩阵 行列式的计算 利用矩阵乘法快速计算递推关系 分数 分数树 连分数逼近 数论计算 求N的约数个数 求phi(N) 求约数和 快速数论变换 …… 素数问题 概率判素算法 概率因子分解 数据结构 组织结构 二叉堆 左偏树 二项树 胜者树 跳跃表 样式图标 斜堆 reap 统计结构 树状数组 虚二叉树 线段树 矩形面积并 圆形面积并 关系结构 Hash表 并查集 路径压缩思想的应用 STL中的数据结构 vector deque set / map 动态规划 / 记忆化搜索 动态规划和记忆化搜索在思考方式上的区别 最长子序列系列问题 最长不下降子序列 最长公共子序列 一类NP问题的动态规划解法 树型动态规划 背包问题 动态规划的优化 四边形不等式 函数的凸凹性 状态设计 规划方向 线性规划 常用思想 二分 最小表示法 串 KMP Trie结构 后缀树/后缀数组 LCA/RMQ 有限状态自动机理论 排序 选择/冒泡 快速排序 堆排序 归并排序 基数排序 拓扑排序 排序网络
扩展阅读:
1
《计算机算法设计与分析导论》朱清新等编着人民邮电出版社
开放分类:
计算机,算法

6. 关于NOIP

NOIP级别中,普及组和提高组的要求不同。
但是这几类动规的题目掌握了,基本也就可以了:
1、背包问题:01背包、完全背包、需要构造的多维01背包
详见背包九讲
2、最大降序:例如打导弹
3、矩阵相乘:例如能量珠子
4、买股票
5、方格取数:单向的、双向的
6、三角取数
这些都是简单的动规的应用,必须掌握,背也要背出来,还要会套用。

至于排序,本人认为基本的选择排序大家都会,快速排序是一定要会的,当数据规模<500时用选择排序,当数据规模在500和100000之间是用快速排序,但是NOIP中经常考到基数排序,例如划分数线等,数据规模会达到1000000,用其他的排序法可能会超时一两个测试点。

至于搜索,那是必须掌握的深搜、广搜都要会,主要是深搜,当提高组碰到一下子想不出动规的状态转移方程式,深搜穷举也是可行的,一般都能拿到不少的分数。个人之间广搜的用处不大,程序复杂而且爆机率很高。当然n个for的穷举法在不得已的时候也能得不少分,只要if剪枝的好,对付八后问题等问题时,时间效率比很高。

另外就是图的遍历,有关图的最小生成树、图的单源最短路径,也是需要很好地掌握,一直会考。当然,深搜的本事高的人可以用深搜搞定。

总结如下:要得一等,必须对模拟法和穷举法有深刻的体会,并知道很多变通的手段;对快排要背的滚瓜烂熟;对深搜要做到不管是贪心还是动规的题,都能用深搜实现,只不过少量点超时而已;动规要记住六大模型,然后背包要理解透彻;数学很重要,数学分析的题要做对,例如排组合、凸包、计算几何近几年常考。有了这些,一等可以稳拿。

7. 常见算法有哪些

模拟
拟阵
暴力
贪心
二分法
整体二
三分法
一般动规与递推
斯坦纳树
动态树分治
2-SAT
并查集
差分约束
最短路
最小割
费用流
最大流
有上下界网络流
虚树
矩阵树定理
最小生成树
点分治
树链剖分
prufer编码
哈夫曼树
拉格朗日乘数法
BSGS
博弈论
矩阵乘法
高斯消元
容斥原理
抽屉原理
模线性方程组
莫比乌斯反演
快速傅里叶变换
扩展欧几里得算法(
裴蜀定理
dfs序
深度搜索
迭代深搜
广度搜索
双向广搜
启发式搜索
dancing link
回文自动机
KMP
字典树
后缀数组
AC自动机
后缀自动机
manacher
凸包
扫描线
三角剖分
旋转卡壳
半平面交
cdq分治
莫队算法
爬山算法
分数规划
模拟退火
朱刘算法
随机增量法
倍增算法

阅读全文

与凸包问题的分治算法相关的资料

热点内容
程序员和linux内核交道 浏览:213
安卓怎么把手机资料传到苹果 浏览:944
如何修改注册表命令 浏览:135
公用文件夹打开需要网络凭证 浏览:546
监控服务器怎么配置硬盘 浏览:281
腾讯云服务器怎么查看ftp地址 浏览:300
四时歌PDf 浏览:379
linux查看动态文件 浏览:578
轻松筹app怎么发起筹款 浏览:217
链家app怎么增加关注小区 浏览:804
u8客户端连接不上阿里云服务器 浏览:395
如何连上谷歌的服务器 浏览:722
安卓圆头接口叫什么 浏览:176
kd源码指标公式 浏览:60
ss和ssr的混淆和加密 浏览:879
程序员大神从来不加班 浏览:217
英雄联盟文件夹tqm有什么用 浏览:108
网络运营文件加密是什么工作啊 浏览:746
箍筋加密区和非加密区根数怎么计算 浏览:861
新机编译发热 浏览:395