❶ 小学数学计算教学如何开展
一、创设情境,激发兴趣,兴趣是最好的老师
新课标指出:计算应使学生经历从现实生活中抽象数和简单的数量关系,在具体情景中理解,并应用所学知识解决问题。在计算教学中把计算作为专门技能学习显然是不够的,要达到新课标要求,“创设情境”无疑是培养学生兴趣的最好办法。因为有了情景,计算教学才有了生命活力,才能展现数学课堂魅力。
数学中的情景应该是有价值的,而有价值的数学情境应该是与学生的现实生活和以往知识体系密切关系的,让学生“触景生思”,调动学生数学思维的积极性,引起他们更多的数学联想,比较容易唤起学生内部正在休眠的已有的知识、经验、策略和兴趣情境。
怎样让现实情境为计算教学更好地服务?首先要明确把计算教学置入现实情境,目的之一是加强枯燥、单调计算教学与现实生活之间的联系;目的之二是借助现实情境使学生进一步理解计算的意义,在解决实际问题的过程中体会算理算法,把学生从机械、无效的繁杂运算中解放出来。其次,计算教学的本质是算理算法:通过学习,学生明确算理―掌握算法―形成技能技巧―感悟数学的思想方法,这是计算教学的目的。情境导入是手段,现实情境要为计算教学服务,两者关系不能颠倒。教材中不难发现,大部分计算教学内容创设的情境和数量关系都是比较简单的,表明分析数量关系不是目的,借助情景图激发学生的学习兴趣、理解计算的意义才是根本。
二、重视算理和算法教学,优化算法
学生学习数学的任何内容都应该有根据、有条理地进行思维活动。计算算理是说明计算过程中的依据和合理性。计算算法是说明计算过程中的规则和逻辑顺序。在学习计算的过程中明确算理和算法,学生就便于灵活、简便地计算,计算的多样性才有基础和可能。叶澜教授说:“没有聚焦的发散是没有价值的,聚焦的目的是促进学生发展。”教学中我们要有意识地引导学生对他们的方法进行比较、归类、评价,从而找到最优算法,形成计算能力。
三、增强学生的数感
“新课标”首次提出“数感”一词。概括地说,数感就是一个人对数的意义和运算的直觉感知,如四年级教学简便计算时,对25、4、125、8这几个数的敏感等。具有良好数感的人,对数的意义和运算有灵敏而强烈的感觉、感受和感知能力,并做出迅速准确的反应。但它的形成不是一蹴而就的,需要认真扎实地学习知识,更需要及时有效的反馈练习,通过一些必要练习反复作用于学生的感知,附着于学生的知识结构,久而久之,达到强化数感的目的。
四、培养学生良好的学习习惯
学生的计算错误从表面看是“粗心”造成的,而“粗心”的原因又是什么呢?不外乎两个方面:一是由于儿童的生理、心理发展尚不够成熟,另一方面由于没有养成良好的学习习惯。
课堂上,老师首先要做好示范:板演符合规范,既言传又身教。培养学生良好计算习惯:第一,校对的习惯。计算都要抄题,要求学生凡是抄下来的都校对,做到不错不漏。 第二,验算的习惯 。拥有一种好习惯,将受益终生。反思自己的教学,我在日常教学中忽略验算教学,这是我今后教学要注意的地方。为培养学生的验算习惯,提高解题正确率,教师必须确立“凡做题必验算”的思想,教会学生验算方法,要求学生做到的老师一定要首先做到,帮助学生养成严谨的验算习惯。
培养学生较强的计算能力是小学数学教学的重要任务。计算课枯燥乏味,学生提不起学习兴趣,这就需要教师精心设计课堂教学,改变以往例题单一的呈现方式,从教材特点出发,从学生实际出发,从儿童兴趣出发,联系生活实际,进行多媒体整合,为学生创造充满童趣、富有活力的学习环境,使枯燥的计算教学焕发新的生命力,让学生变得乐学、爱学。
❷ 数学中的对数的意义
对数只不过是指数函数y=e^x的反函数。
以中学生知识程度,是不会了解对数函数的重要应用价值的。 不过在物理里面, 许多物理现象的数学描述里都会出现Lnx的,比如电磁场里的一些东西。
在大学数学里讲到复分析时, 对数函数实际上可以用来计算一个函数的零点集(就是方程的根)。
❸ 什么是对数
对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵。
在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。
当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。
那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子:
0、1、2、3、4、5、6、7 、8 、9 、10 、11 、12 、13 、14 、……
1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、……
这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。
比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384。
纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?
经过多年的探索,纳皮尔男爵于1614年出版了他的名着《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。
所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的着作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国着名的数学家、天文学家拉普拉斯(PierreSimonLaplace,1749-1827)曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。
❹ 对数的现实意义是什么
现实意义是化简了大数据的计算。随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急。纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.
❺ 对数的意义
对数的意义:对数(logarithm)是对求幂的逆运算,一个数字的对数是必须产生另一个固定数字(基数)的指数。 对数的符号log出自拉丁文logarithm,最早由意大利数学家卡瓦列里(Cavalieri)所使用。如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。
❻ 如何理解“对数”
对数是苏格兰数学家纳皮尔在做天文研究是发现的一种乘法开方的逆算法,这一重大的发明,让许多数学研究家欣喜若狂,因为它解决了算术上的一个大难题。对数的形式有log和ln,形式的下标是乘数,上标是最终得数,等值的数是次方数,在我们现在看来这只不过是很简单的数学计算,而它的出现却能够给当时的各界行业的人带来震撼和喜悦,可见它的意义重大。其实对数的本质和基本的算术乘法和开方有直接关系,这是算数的三种表现形式,因此理解对数的含义,也需要从这三个形式的关系分析入手。
1、对数简便了连乘的手写工序。最开始写算术乘法我们都是一个一个的乘,比如5*5*5,简短的几个不麻烦书写,也不会出现写漏和多写的情况,但乘得越来越多就会出现这些问题,因此将一串很长的算术整合成一个式子可以缩减书写量和提高正确率,运用次方就可以写成5^3,它的等值是125,写成对数形式就成了log5 125=3。
❼ 对数运算的算术学意义
对数的概念:logarithms
如果b^n=x,则记n=log(b)(x)。其中,b叫做“底数”,x叫做“真数”,n叫做“以b为底的x的对数”。
log(b)(x)函数中x的定义域是x>0,零和负数没有对数;b的定义域是b>0且b≠1
对数的历史:
对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵。在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子:
0、1、2、3、4、5、6、7 、8 、9 、10 、11 、12 、13 、14 、……
1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、……
这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384。纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?经过多年的探索,纳皮尔男爵于1614年出版了他的名着《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的着作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国着名的数学家、天文学家拉普拉斯(PierreSimonLaplace,1749-1827)曾说对数可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。
对数的性质及推导
用^表示乘方,用log(a)(b)表示以a为底,b的对数
*表示乘号,/表示除号
定义式:
若a^n=b(a>0且a≠1)
则n=log(a)(b)
基本性质:
1.a^(log(a)(b))=b
2.log(a)(MN)=log(a)(M)+log(a)(N);
3.log(a)(M/N)=log(a)(M)-log(a)(N);
4.log(a)(M^n)=nlog(a)(M)
推导
1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)
2.
MN=M*N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)
3.与2类似处理
MN=M/N
由基本性质1(换掉M和N)
a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]
由指数的性质
a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M/N) = log(a)(M) - log(a)(N)
4.与2类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
其他性质:
性质一:换底公式
log(a)(N)=log(b)(N) / log(b)(a)
推导如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]
综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N) / log(b)(a)
性质二:(不知道什么名字)
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下
由换底公式[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(a^n) / ln(b^n)
由基本性质4可得
log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]}
再由换底公式
log(a^n)(b^m)=m/n*[log(a)(b)]
--------------------------------------------(性质及推导 完 )
公式三:
log(a)(b)=1/log(b)(a)
证明如下:
由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1
=1/log(b)(a)
还可变形得:
log(a)(b)*log(b)(a)=1
❽ 对数运算有什么优势
最大的优势就是把复杂的运算变成简单的计算。
把复杂的乘法运算,运用对数变成简单的加法计算
把复杂的乘方运算,运用对数变成简单的乘法计算。
❾ 对数的运算法则及公式是什么
运算法则公式如下:
1、lnx+ lny=lnxy
2、lnx-lny=ln(x/y)
3、lnxⁿ=nlnx
4、ln(ⁿ√x)=lnx/n
5、lne=1
对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。对数运算,实际上也就是指数在运算。
应用
对数在数学内外有许多应用。这些事件中的一些与尺度不变性的概念有关。例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。Benford关于领先数字分配的定律也可以通过尺度不变性来解释。对数也与自相似性相关。例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题。
以上内容参考:网络-对数