导航:首页 > 源码编译 > 联邦学习原理与算法

联邦学习原理与算法

发布时间:2022-04-22 14:06:53

❶ 联邦机器学习的优势是什么

具备安全性高、版大数据分析能力强、接入便捷、高效率和低成本的四大优势。目前可以狭义地认为机器学习只不过是起到了自动调节各因素权重,综合学习出来一个组合而已。它为什么有作用?不在于它比人更聪明,而是在于它能处理的数据量更大,超过了单个人的处理能力,也超过了多个人协作处理的能力。在当前全民大数据的背景下,机器学习也会被炒得更火,捧得更高。但目前深度学习的操作中,领军人物是一般是从第二个应用方式(学习特征表示)来发展机器学习的,这或许是思维的一个大转变。

❷ 联邦学习如何检验恶意梯度

联邦学习可通过最优聚合算法来检验恶意梯度。
该算法通过检查局部梯度与全局梯度的关系,识别和排除不利于全局收敛地局部更新,找到每个全局回合中参与节点局部更新的最优子集。
联邦学习(FL)是一种分布式学习范式,它允许大量资源有限的节点在没有数据共享的情况下协作训练模型。非独立的和同分布的(Non-IID)数据样本造成了全局目标和局部目标之间的差异,使得FL模型收敛缓慢。

❸ 什么是联邦学习

什么是联邦学习呢?举例来说,假设有两个不同的企业A和B,它们拥有不同的数据,比如企业A有用户特征数据,企业B有产品特征数据和标注数据。这两个企业按照GDPR准则是不能粗暴地把双方数据加以合并的,因为他们各自的用户并没有机会同意这样做。假设双方各自建立一个任务模型,每个任务可以是分类或预测,这些任务也已经在获得数据时取得了各自用户的认可。那么,现在的问题是如何在A和B各端建立高质量的模型。但是,又由于数据不完整(例如企业A缺少标签数据,企业B缺少特征数据),或者数据不充分(数据量不足以建立好的模型),各端有可能无法建立模型或效果不理想。

❹ 在金融风控领域,联邦机器学习具有什么优势

在金融风控领域,腾讯安全联邦学习应用服务(FLAS)具有算法多样性、通信效率高、轻量易部署、稳定性高的优势。目前,它已经与银行、消金、互金等金融机构广泛开展合作,助力金融大数据信贷风控业务。。我的回答你还满意,采纳下吧

❺ 智能金融的内容是什么

1、什么是智能金融?

智能金融尚无统一定义。《报告》提出,智能金融是指人工智能技术与金融业深度融合的新业态,是用机器替代和超越人类部分经营管理经验与能力的金融模式变革。

2、智能金融和金融科技有什么区别?

《报告》提出,智能金融与数字化转型、金融科技既有密切联系又有重要区别。

智能金融的发展基础是金融机构数字化转型,数字化转型为智能金融的发展提供了基础设施的保障。

智能金融是金融科技发展的高级形态,是在数字化基础上的升级与转型,代表着未来发展趋势,已成为金融业的核心竞争力。

相比互联网金融、金融科技,智能金融更具革命性的优势在于对金融生产效率的根本颠覆。智能金融替代甚至超越人类行为和智力,更精准高效地满足各类金融需求,推动我国金融行业变革与跨越式发展。

3、为什么要专门研究智能金融?

把智能金融从金融科技中单列出来编制专门的发展报告,主要是基于以下考虑:

一方面,发展人工智能技术已成为我国的一项重要战略,当前各国在新一代人工智能技术已展开激烈竞争。而金融与人工智能具有天然的耦合性,是人工智能技术应用最重要的领域之一,发展智能金融有利于我国抢抓人工智能发展机遇,占领技术制高点,特别是金融业的特殊性,势必对人工智能技术提出新的要求和挑战,可以推动我国人工智能技术的突破与升级,提高技术转化效率。

另一方面,人工智能技术为未来金融业发展提供无限可能,是对现有金融科技应用的进化与升级,对金融业发展将会产生颠覆性变革。专门研究智能金融有利于跟踪世界人工智能技术与金融业融合的应用开发,有利于加强金融行业的适应性、竞争力和普惠性,极大地提高金融机构识别和防控风险的能力和效率,推动我国金融供给侧结构性改革,增强金融服务实体经济和人民生活的能力,守住不发生系统性风险的底线,加快建设我国现代化金融体系,增强金融国际竞争力,助力由金融大国到金融强国的转变。

4、智能金融现在有哪些应用场景?

《报告》提到,目前智能金融的应用主要包括前中后台三大方面。

第一,智能身份识别已广泛用于个人身份验证。以指纹识别和人脸识别为代表的主流智能身份识别技术已进入大规模应用阶段,在远程核验、人脸支付、智慧网点和运营安全方面应用广泛。

第二,智能营销降低营销成本、改善服务效能。智能营销正在经历从人机分工向人机协同方式的转变,未来的智能营销将变成跨领域、融合的人机合作工作方式,进一步改善金融服务的效能。

第三,智能客服能节省客服资源和提升服务效率。智能客服不仅提供自动化问题应答,而且对接前端各个渠道,提供统一的智能化客服能力,并持续改进和沉淀,提供全天候精准的服务,提升服务效率。

第四,智能投顾已有试点,全面推广有待继续探索。智能投顾在国内外已有诸多应用案例,但我国因为缺乏明确的业务模式、服务定位仍不明确,全面推广仍有待继续探索发展。

第五,智能投资初具盈利能力,发展潜力巨大。一些公司运用人工智能技术不断优化算法、增强算力、实现更加精准的投资预测,提高收益、降低尾部风险。通过组合优化,在实盘中取得了显着的超额收益,未来智能投资的发展潜力巨大。

第六,智能信用评估提升小微信贷服务能力。智能信用评估具有线上实时运行、系统自动判断、审核周期短的优势,为小微信贷提供了更高效的服务模式。在一些互联网银行中应用广泛。

第七,智能风控实现金融机构风控业务转型。智能风控为金融行业提供了一种基于线上业务的新型风控模式,但目前只有少部分有能力的金融机构运用,有待继续试点和推广。

第八,智能运营管理提升运营效率,降低运营成本。智能运营管理将业务运营逐渐从分散走向集中、从自动化走向智能化。从而提升业务运营效率,减少业务办理差错,降低管理成本。智能运营成为各家金融机构开展智能金融的优先考虑和使用的场景。

第九,智能平台赋能金融机构提升服务、改造流程、转型升级。智能平台建设是金融机构智能化转型的核心,持续为上层应用提供丰富、多维度的智能服务,构建完整的服务生态圈。

综上所述,智能金融目前整体仍处于“浅应用”的初级发展阶段,主要是对流程性、重复性的任务实施智能化改造。

《报告》认为,人工智能技术应用正处在从金融业务外围向核心渗透的过渡阶段,发展潜力巨大。

5、在智能金融应用场景中,“算法黑箱”问题可能会更加突出?如何避免?

肖钢认为,人工智能有一个问题是算法的可解释性比较差,要解决这个问题可以从几个方面来着手:

第一,要让算法可解释。现在人工智能科学家正在攻克模型算法的黑箱问题,期待着不久的将来在技术上有所攻破。

第二,可以采取分层管理。例如,根据是否对金融消费者产生伤害的程度进行分类管理,有的可以不解释,有的只是解释模型怎样运行的,有的要解释结果及其原因,有的需要进一步解释模型背后的逻辑和运作原理。当然,如果最后还是无法解释,投资者和消费者也不相信,监管部门就不准在金融领域使用。

因此,如果人工智能运用到金融行业,未必需要解释所有的模型,可以对模型进行分层管理,提出明确要求。

第三,分清楚责任。无论是否使用人工智能,金融机构销售金融产品和服务的卖者尽责义务没有减弱。机构需要了解自己的客户,把恰当的产品卖给恰当的人。责任不会因为是否采用了人工智能技术而有所改变。

6、个人隐私和数据保护问题已经成为社会普遍关切。智能金融时代,如何构建起相关法律法规体系?

《报告》中提到,个人数据的问题目前缺乏法律规定,确实需要立法。肖钢认为,数据很重要,尤其在人工智能时代,其重要性日益凸显,这与原来的工业革命时期不同。工业革命建立在物理资本上,而人工智能则是建立在信息资本和数据资本上。因此,谁控制了数据,谁就垄断了权力。

肖钢认为,个人隐私和数据保护领域有很多问题待明确,例如哪些数据能搜集、数据的权属是谁的、如何建立个人信息权的体系等,这些都是新的课题。

保护个人数据隐私,肖钢从以下方面提出建议:

第一,需要补短板,抓紧制定相关法律法规,并逐步加以完善。

第二,要防止数据垄断。鉴于大型科技公司的技术优势与数据获取能力,存在赢者通吃的效应,要求大公司开放数据,让中小科技公司也要利用其数据开发业务,维护公平竞争环境。

第三,要进行综合治理。数据隐私保护不仅是金融监管的事情,还涉及到政府部门、IT公司、金融机构、实体企业和个人,是全社会的事情,所以要形成各方参与,协同治理的体系。

第四,需要发展新技术,以解决技术带来的问题。“联邦学习”的技术就是一个方法,既保护了数据安全,同时又可以共享数据建模。

❻ 知识联邦和联邦学习是一个概念吗

联邦学习是知识联邦的一个子集,专注于数据分布的联合建模。而知识联邦关注的是安全的、数据到知识的“全生命周期”的知识创造、管理和使用及其监管,致力于推动下一代人工智能,而不仅仅是一个安全的联合建模。

❼ 什么是联邦机器学习

联邦机器学习(Federated machine learning/Federated Learning),又名联邦学习,联合学习,联盟学习。联邦机器学习是一个机器学习框架,能有效帮助多个机构在满足用户隐私保护、数据安全和政府法规的要求下,进行数据使用和机器学习建模。 [1]
举例来说,假设有两个不同的企业 A 和 B,它们拥有不同数据。比如,企业 A 有用户特征数据;企业 B 有产品特征数据和标注数据。这两个企业按照上述 GDPR 准则是不能粗暴地把双方数据加以合并的,因为数据的原始提供者,即他们各自的用户可能不同意这样做。假设双方各自建立一个任务模型,每个任务可以是分类或预测,而这些任务也已经在获得数据时有各自用户的认可,那问题是如何在 A 和 B 各端建立高质量的模型。由于数据不完整(例如企业 A 缺少标签数据,企业 B 缺少用户特征数据),或者数据不充分 (数据量不足以建立好的模型),那么,在各端的模型有可能无法建立或效果并不理想。联邦学习是要解决这个问题:它希望做到各个企业的自有数据不出本地,而后联邦系统可以通过加密机制下的参数交换方式,即在不违反数据隐私法规情况下,建立一个虚拟的共有模型。这个虚拟模型就好像大家把数据聚合在一起建立的最优模型一样。但是在建立虚拟模型的时候,数据本身不移动,也不泄露隐私和影响数据合规。这样,建好的模型在各自的区域仅为本地的目标服务。在这样一个联邦机制下,各个参与者的身份和地位相同,而联邦系统帮助大家建立了“共同富裕”的策略。 这就是为什么这个体系叫做“联邦学习”。

❽ 同盾的联邦学习是做什么的

联邦学习是一种采用分布式的机器学习/深度学习技术,参与各方在加密的基础上共建一个公共虚拟模型(可以相同也可以不同),训练和交互的全过程各方的数据始终留在本地,不参与交换和合并。也就是说同盾的联邦学习技术主要是在充分保护数据和隐私安全的前提下,实现大数据价值的转化和提炼。

❾ 同盾的知识联邦和联邦学习有什么关系

联邦学习更关注的是联合建模训练过程,最初的联邦学习是面向用户客户端解决跨样例联邦问题的。在这种情况下,数据特征在每个用户端保持一致,如何通过安全联邦的方式训练模型成为关键,而至于模型训练好之后的预测基本不用考虑,因为每个训练好的模型只依赖当前用户端的数据,预测时不需要数据交换。在机构间进行跨特征联邦时,建模完成后的预测过程中仍然需要进行联邦。
知识联邦关注的是通过联邦创建或应用提取有价值的知识,其联邦的目的可能是建模、预测、计算、推理。知识联邦不仅仅是面向学习,还包括安全的多方计算和知识推理。

❿ 同盾的知识联邦和其他厂提的联邦学习有哪些显着不同

同盾的知识联邦是一个统一的安全多方应用框架,它支持安全多方查询、安全多方计算、安全多方学习、安全多方推理等多种联邦应用。知识联邦在借鉴一些相关技术的同时,也具备一定的独创性,尤其是在认知层和知识层联邦都是自主创新的。知识联邦与其它技术领域,如联邦学习、区块链、隐私计算、安全多方计算等,都有着紧密的关系。

阅读全文

与联邦学习原理与算法相关的资料

热点内容
手机摄像文件夹名 浏览:132
口才训练手册编译口才精品书系 浏览:998
linuxfunc 浏览:269
高德地图解压后的文件 浏览:639
php加水印类 浏览:228
编译原理定义表格和编写查找函数 浏览:350
指数函数和对数函数的高精度快速算法 浏览:209
c预编译干什么 浏览:25
hp网络共享文件夹 浏览:366
程序员如何不被废 浏览:807
二进制流转pdf 浏览:917
php判断爬虫 浏览:572
960除24除4简便算法 浏览:788
关于解压英语翻译 浏览:569
python控制键盘右键 浏览:922
php没有libmysqldll 浏览:830
时政新闻app哪个好 浏览:907
手机已加密怎么办 浏览:202
安卓手机截屏怎么传到苹果 浏览:530
京管家app哪里下载 浏览:34