导航:首页 > 源码编译 > isodata聚类算法

isodata聚类算法

发布时间:2022-04-26 11:53:37

❶ 聚类算法有哪些

聚类方法分为以下几类:
分割方法:K-means
分层次方法:ROCK 、 Chemeleon
基于密度的方法:DBSCAN
基于网格的方法:STING 、 WaveCluster
等等

❷ 几种分类方法的应用效果

(1)基于ISODATA算法的非监督分类实现与效果

ISODATA法的实质是以初始类别为“种子”施行自动迭代聚类的过程。迭代结束标志着分类所依据的基准类别已经确定,它们的分布参数也在不断的“聚类训练”中逐渐确定,并最终用于构建所需要的判决函数。从这个意义上讲,基准类别参数的确定过程,也是对判决函数的不断调整和“训练”过程。

此次实现过程是在基于 IDL 语言下的 ENVI4.0 环境下实现的。主要参数如下:拟分类个数(Number of Classes):6;最大迭代次数(Maximum Iterations):8;像元变化阈值(Change Thresh-old):5%;一类中的最小像元数(Minimum Pixel in Class):5;类的最大标准差(Maximum Class Stdv):1;最小距离(Minimum Class Distance):5;合并成对类别的最大值(Maximum Merge Pairs):2;我们想要计算所有像元的DN值,故距离类别均值得标准差(Maximum Stdev From Mean)和所允许的最大距离误差(Maximum Distance Error)均为缺省DN值。

图3-24是显示康恩纳德斑岩铜矿床周围的影像为处理数据源的ISODATA非监督分类图。

表3-17 康恩纳德矿点ETM+遥感影像分类后类别比重表

❸ isodata聚类算法用什么软件

可以的,isodata算法是自己设定聚类个数的,我不知道你是用的什么工具编程,还是用的某个软件,但是里面必然会有设置参数的地方,把聚类个数对应的参数改成三就可以了。你可以试试模糊聚类,比如模糊c均值,它聚类性能要比硬聚类算法好一些,matlab里面有自带的程序。

❹ 各种遥感数据分类方法比较

常用的遥感数据的专题分类方法有多种,从分类判别决策方法的角度可以分为统计分类器、神经网络分类器、专家系统分类器等;从是否需要训练数据方面,又可以分为监督分类器和非监督分类器。

一、统计分类方法

统计分类方法分为非监督分类方法和监督分类方法。非监督分类方法不需要通过选取已知类别的像元进行分类器训练,而监督分类方法则需要选取一定数量的已知类别的像元对分类器进行训练,以估计分类器中的参数。非监督分类方法不需要任何先验知识,也不会因训练样本选取而引入认为误差,但非监督分类得到的自然类别常常和研究感兴趣的类别不匹配。相应地,监督分类一般需要预先定义分类类别,训练数据的选取可能会缺少代表性,但也可能在训练过程中发现严重的分类错误。

1.非监督分类器

非监督分类方法一般为聚类算法。最常用的聚类非监督分类方法是 K-均值(K-Means Algorithm)聚类方法(Duda and Hart,1973)和迭代自组织数据分析算法(ISODATA)。其算法描述可见于一般的统计模式识别文献中。

一般通过简单的聚类方法得到的分类结果精度较低,因此很少单独使用聚类方法进行遥感数据专题分类。但是,通过对遥感数据进行聚类分析,可以初步了解各类别的分布,获取最大似然监督分类中各类别的先验概率。聚类分析最终的类别的均值矢量和协方差矩阵可以用于最大似然分类过程(Schowengerdt,1997)。

2.监督分类器

监督分类器是遥感数据专题分类中最常用的一种分类器。和非监督分类器相比,监督分类器需要选取一定数量的训练数据对分类器进行训练,估计分类器中的关键参数,然后用训练后的分类器将像元划分到各类别。监督分类过程一般包括定义分类类别、选择训练数据、训练分类器和最终像元分类四个步骤(Richards,1997)。每一步都对最终分类的不确定性有显着影响。

监督分类器又分为参数分类器和非参数分类器两种。参数分类器要求待分类数据满足一定的概率分布,而非参数分类器对数据的概率分布没有要求。

遥感数据分类中常用的分类器有最大似然分类器、最小距离分类器、马氏距离分类器、K-最近邻分类器(K-Nearest neighborhood classifier,K-NN)以及平行六面体分类器(parallelepiped classifier)。最大似然、最小距离和马氏距离分类器在第三章已经详细介绍。这里简要介绍 K-NN 分类器和平行六面体分类器。

K-NN分类器是一种非参数分类器。该分类器的决策规则是:将像元划分到在特征空间中与其特征矢量最近的训练数据特征矢量所代表的类别(Schowengerdt,1997)。当分类器中 K=1时,称为1-NN分类器,这时以离待分类像元最近的训练数据的类别作为该像元的类别;当 K >1 时,以待分类像元的 K 个最近的训练数据中像元数量最多的类别作为该像元的类别,也可以计算待分类像元与其 K 个近邻像元特征矢量的欧氏距离的倒数作为权重,以权重值最大的训练数据的类别作为待分类像元的类别。Hardin,(1994)对 K-NN分类器进行了深入的讨论。

平行六面体分类方法是一个简单的非参数分类算法。该方法通过计算训练数据各波段直方图的上限和下限确定各类别像元亮度值的范围。对每一类别来说,其每个波段的上下限一起就形成了一个多维的盒子(box)或平行六面体(parallelepiped)。因此 M 个类别就有M 个平行六面体。当待分类像元的亮度值落在某一类别的平行六面体内时,该像元就被划分为该平行六面体代表的类别。平行六面体分类器可以用图5-1中两波段的遥感数据分类问题来表示。图中的椭圆表示从训练数据估计的各类别亮度值分布,矩形表示各类别的亮度值范围。像元的亮度落在哪个类别的亮度范围内,就被划分为哪个类别。

图5-1 平行六面体分类方法示意图

3.统计分类器的评价

各种统计分类器在遥感数据分类中的表现各不相同,这既与分类算法有关,又与数据的统计分布特征、训练样本的选取等因素有关。

非监督聚类算法对分类数据的统计特征没有要求,但由于非监督分类方法没有考虑任何先验知识,一般分类精度比较低。更多情况下,聚类分析被作为非监督分类前的一个探索性分析,用于了解分类数据中各类别的分布和统计特征,为监督分类中类别定义、训练数据的选取以及最终的分类过程提供先验知识。在实际应用中,一般用监督分类方法进行遥感数据分类。

最大似然分类方法是遥感数据分类中最常用的分类方法。最大似然分类属于参数分类方法。在有足够多的训练样本、一定的类别先验概率分布的知识,且数据接近正态分布的条件下,最大似然分类被认为是分类精度最高的分类方法。但是当训练数据较少时,均值和协方差参数估计的偏差会严重影响分类精度。Swain and Davis(1978)认为,在N维光谱空间的最大似然分类中,每一类别的训练数据样本至少应该达到10×N个,在可能的条件下,最好能达到100×N以上。而且,在许多情况下,遥感数据的统计分布不满足正态分布的假设,也难以确定各类别的先验概率。

最小距离分类器可以认为是在不考虑协方差矩阵时的最大似然分类方法。当训练样本较少时,对均值的估计精度一般要高于对协方差矩阵的估计。因此,在有限的训练样本条件下,可以只估计训练样本的均值而不计算协方差矩阵。这样最大似然算法就退化为最小距离算法。由于没有考虑数据的协方差,类别的概率分布是对称的,而且各类别的光谱特征分布的方差被认为是相等的。很显然,当有足够训练样本保证协方差矩阵的精确估计时,最大似然分类结果精度要高于最小距离精度。然而,在训练数据较少时,最小距离分类精度可能比最大似然分类精度高(Richards,1993)。而且最小距离算法对数据概率分布特征没有要求。

马氏距离分类器可以认为是在各类别的协方差矩阵相等时的最大似然分类。由于假定各类别的协方差矩阵相等,和最大似然方法相比,它丢失了各类别之间协方差矩阵的差异的信息,但和最小距离法相比较,它通过协方差矩阵保持了一定的方向灵敏性(Richards,1993)。因此,马氏距离分类器可以认为是介于最大似然和最小距离分类器之间的一种分类器。与最大似然分类一样,马氏距离分类器要求数据服从正态分布。

K-NN分类器的一个主要问题是需要很大的训练数据集以保证分类算法收敛(Devijver and Kittler,1982)。K-NN分类器的另一个问题是,训练样本选取的误差对分类结果有很大的影响(Cortijo and Blanca,1997)。同时,K-NN分类器的计算复杂性随着最近邻范围的扩大而增加。但由于 K-NN分类器考虑了像元邻域上的空间关系,和其他光谱分类器相比,分类结果中“椒盐现象”较少。

平行六面体分类方法的优点在于简单,运算速度快,且不依赖于任何概率分布要求。它的缺陷在于:首先,落在所有类别亮度值范围之外的像元只能被分类为未知类别;其次,落在各类别亮度范围重叠区域内的像元难以区分其类别(如图5-1所示)。

各种统计分类方法的特点可以总结为表5-1。

二、神经网络分类器

神经网络用于遥感数据分类的最大优势在于它平等地对待多源输入数据的能力,即使这些输入数据具有完全不同的统计分布,但是由于神经网络内部各层大量的神经元之间连接的权重是不透明的,因此用户难以控制(Austin,Harding and Kanellopoulos et al.,1997)。

神经网络遥感数据分类被认为是遥感数据分类的热点研究领域之一(Wilkinson,1996;Kimes,1998)。神经网络分类器也可分为监督分类器和非监督分类器两种。由于神经网络分类器对分类数据的统计分布没有任何要求,因此神经网络分类器属于非参数分类器。

遥感数据分类中最常用的神经网络是多层感知器模型(multi-layer percep-tron,MLP)。该模型的网络结构如图5-2所示。该网络包括三层:输入层、隐层和输出层。输入层主要作为输入数据和神经网络输入界面,其本身没有处理功能;隐层和输出层的处理能力包含在各个结点中。输入的结构一般为待分类数据的特征矢量,一般情况下,为训练像元的多光谱矢量,每个结点代表一个光谱波段。当然,输入结点也可以为像元的空间上下文信息(如纹理)等,或多时段的光谱矢量(Paola and Schowengerdt,1995)。

表5-1 各种统计分类器比较

图5-2 多层感知器神经网络结构

对于隐层和输出层的结点来说,其处理过程是一个激励函数(activation function)。假设激励函数为f(S),对隐层结点来说,有:

遥感信息的不确定性研究

其中,pi为隐层结点的输入;hj为隐层结点的输出;w为联接各层神经之间的权重。

对输出层来说,有如下关系:

遥感信息的不确定性研究

其中,hj为输出层的输入;ok为输出层的输出。

激励函数一般表达为:

遥感信息的不确定性研究

确定了网络结构后,就要对网络进行训练,使网络具有根据新的输入数据预测输出结果的能力。最常用的是后向传播训练算法(Back-Propagation)。这一算法将训练数据从输入层进入网络,随机产生各结点连接权重,按式(5-1)(5-2)和(5-3)中的公式进行计算,将网络输出与预期的结果(训练数据的类别)相比较并计算误差。这个误差被后向传播的网络并用于调整结点间的连接权重。调整连接权重的方法一般为delta规则(Rumelhart,et al.,1986):

遥感信息的不确定性研究

其中,η为学习率(learning rate);δk为误差变化率;α为动量参数。

将这样的数据的前向和误差后向传播过程不断迭代,直到网络误差减小到预设的水平,网络训练结束。这时就可以将待分类数据输入神经网络进行分类。

除了多层感知器神经网络模型,其他结构的网络模型也被用于遥感数据分类。例如,Kohonen自组织网络被广泛用于遥感数据的非监督聚类分析(Yoshida et al.,1994;Schaale et al.,1995);自适应共振理论(Adaptive Resonance Theory)网络(Silva,S and Caetano,M.1997)、模糊ART图(Fuzzy ART Maps)(Fischer,M.M and Gopal,S,1997)、径向基函数(骆剑承,1999)等也被用于遥感数据分类。

许多因素影响神经网络的遥感数据分类精度。Foody and Arora(1997)认为神经网络结构、遥感数据的维数以及训练数据的大小是影响神经网络分类的重要因素。

神经网络结构,特别是网络的层数和各层神经元的数量是神经网络设计最关键的问题。网络结构不但影响分类精度,而且对网络训练时间有直接影响(Kavzoglu and Mather,1999)。对用于遥感数据分类的神经网络来说,由于输入层和输出层的神经元数目分别由遥感数据的特征维数和总的类别数决定的,因此网络结构的设计主要解决隐层的数目和隐层的神经元数目。一般过于复杂的网络结构在刻画训练数据方面较好,但分类精度较低,即“过度拟合”现象(over-fit)。而过于简单的网络结构由于不能很好的学习训练数据中的模式,因此分类精度低。

网络结构一般是通过实验的方法来确定。Hirose等(1991)提出了一种方法。该方法从一个小的网络结构开始训练,每次网络训练陷入局部最优时,增加一个隐层神经元,然后再训练,如此反复,直到网络训练收敛。这种方法可能导致网络结构过于复杂。一种解决办法是每当认为网络收敛时,减去最近一次加入的神经元,直到网络不再收敛,那么最后一次收敛的网络被认为是最优结构。这种方法的缺点是非常耗时。“剪枝法”(pruning)是另一种确定神经网络结构的方法。和Hirose等(1991)的方法不同,“剪枝法”从一个很大的网络结构开始,然后逐步去掉认为多余的神经元(Sietsma and Dow,1988)。从一个大的网络开始的优点是,网络学习速度快,对初始条件和学习参数不敏感。“剪枝”过程不断重复,直到网络不再收敛时,最后一次收敛的网络被认为最优(Castellano,Fanelli and Pelillo,1997)。

神经网络训练需要训练数据样本的多少随不同的网络结构、类别的多少等因素变化。但是,基本要求是训练数据能够充分描述代表性的类别。Foody等(1995)认为训练数据的大小对遥感分类精度有显着影响,但和统计分类器相比,神经网络的训练数据可以比较少。

分类变量的数据维对分类精度的影响是遥感数据分类中的普遍问题。许多研究表明,一般类别之间的可分性和最终的分类精度会随着数据维数的增大而增高,达到某一点后,分类精度会随数据维的继续增大而降低(Shahshahani and Landgrebe,1994)。这就是有名的Hughes 现象。一般需要通过特征选择去掉信息相关性高的波段或通过主成分分析方法去掉冗余信息。分类数据的维数对神经网络分类的精度同样有明显影响(Battiti,1994),但Hughes 现象没有传统统计分类器中严重(Foody and Arora,1997)。

Kanellopoulos(1997)通过长期的实践认为一个有效的ANN模型应考虑以下几点:合适的神经网络结构、优化学习算法、输入数据的预处理、避免振荡、采用混合分类方法。其中混合模型包括多种ANN模型的混合、ANN与传统分类器的混合、ANN与知识处理器的混合等。

三、其他分类器

除了上述统计分类器和神经网络分类器,还有多种分类器被用于遥感图像分类。例如模糊分类器,它是针对地面类别变化连续而没有明显边界情况下的一种分类器。它通过模糊推理机制确定像元属于每一个类别的模糊隶属度。一般的模糊分类器有模糊C均值聚类法、监督模糊分类方法(Wang,1990)、混合像元模型(Foody and Cox,1994;Settle and Drake,1993)以及各种人工神经网络方法等(Kanellopoulos et al.,1992;Paola and Schowengerdt,1995)。由于模糊分类的结果是像元属于每个类别的模糊隶属度,因此也称其为“软分类器”,而将传统的分类方法称为“硬分类器”。

另一类是上下文分类器(contextual classifier),它是一种综合考虑图像光谱和空间特征的分类器。一般的光谱分类器只是考虑像元的光谱特征。但是,在遥感图像中,相邻的像元之间一般具有空间自相关性。空间自相关程度强的像元一般更可能属于同一个类别。同时考虑像元的光谱特征和空间特征可以提高图像分类精度,并可以减少分类结果中的“椒盐现象”。当类别之间的光谱空间具有重叠时,这种现象会更明显(Cortijo et al.,1995)。这种“椒盐现象”可以通过分类的后处理滤波消除,也可以通过在分类过程中加入代表像元邻域关系的信息解决。

在分类过程中可以通过不同方式加入上下文信息。一是在分类特征中加入图像纹理信息;另一种是图像分割技术,包括区域增长/合并常用算法(Ketting and Landgrebe,1976)、边缘检测方法、马尔可夫随机场方法。Rignot and Chellappa(1992)用马尔可夫随机场方法进行SAR图像分类,取得了很好的效果,Paul Smits(1997)提出了保持边缘细节的马尔可夫随机场方法,并用于SAR图像的分类;Crawford(1998)将层次分类方法和马尔可夫随机场方法结合进行SAR图像分类,得到了更高的精度;Cortijo(1997)用非参数光谱分类对遥感图像分类,然后用ICM算法对初始分类进行上下文校正。

❺ 利用ERDAS对tm遥感影像分类步骤 要详细的 急急急

山东科技大学测绘学院遥感系
非监督分类
一、实习目的:掌握非监督分类的方法与过程,加深对非监督分类方法的理解
二 非监督分类(Unsupervised Classification)
ERDAS IMAGINE使用ISODATA算法(基于最小光谱距离公式)来进行非监督分类。聚类过程始于任意聚类平均值或一个己有分类模板的平均值:聚类每重复一次,聚类的平均值就更新一次,新聚类的均值再用于下次聚类循环。 ISODATA实用程序不断重复,直到最大的循环次数已达到设定阈值或者两次聚类结果相比有达到要求百分比的像元类别已经不再发生变化。

第一步:启动非监督分类
调出非监督分类对话框的方法有两种:
→在ERDAS图标面板工具条中单击DataPrep图标,打开Data Preparation对话框,在对话框中单击Unsupervised Classfication按钮,打开Unsupervised Classification.
→在ERDAS图标面板工具条中单击Classifier图标,打开Classification对话框,单击Unsupervised Classification按钮,打开Unsupervised Classification对话框

第二步:进行非监督分类
在Unsupervised Classification对话框进行下列设置:
→确定输入文件(Input Raster File)为germtm.img(被分类的图像)。
→确定输出文件(Output File)为germtm_isodata.img(产生的分类图像).
→选择生成分类模板文件为Output Signature Set (产生一个模板文件)。
→确定分类模板文件(File Name)为(germtm_isodata.sig)
→确定聚类参数(Clustering Options),需要确定初始聚类方法与分类数。
系统提供的初始聚类方法有两种:
Initialize from Statistics方法是按照图像的统计值产生自由聚类。
Use Signature Means方法是按照选定的模板文件进行非监督分类
确定初始分类数(Number of classes)为10(分出10个类别,实际工作中一般将初始分类数取为最终分类数的两倍以上)。

→单击Initializing Options按钮。
→打开File Statistics Options对话框,设置ISODATA的一些统计参数
→单击Color Scheme Option按钮
→打开Output Color Scheme Options对话框,设置分类图像彩色属性
→确定处理参数(Processing Options),需要确定循环次数与循环阈值
→定义最大循环次数(Maximum Iterations)为24(是指ISODATA重新聚类的最多次数,是为了避免程序运行时间太长或由于没有达到聚类标准而导致的死循环,在应用中一般将循环次数设置为6次以上)
→设置循环收敛阈值(Convergence Threshold)为0.95(是指两次分类结果相比保持不变的象元所占最大百分比,是为了避免ISODATA无限循环下去)。
→单击OK按钮(关闭Unsupervised Classification对话框,执行非监督分类)。

三:分类方法调整
第一步:显示原图像与分类图像
在视窗中同时显示germtm.img和germtm_isodat.img:两
个图像的叠加顺序为germtm.img在下,germtm_isodat.img在上,germtm.img显示方式用
红(4)、绿(5)、蓝(3),保证两幅图像叠加显示 。

第二步:打开分类图像属性并调整字段显示顺序
在视窗工具条中:点击图标(或者选择Raster菜单项—--选择Tools菜单)
打开Raster工具面板
→点击Raster工具面板的图标(或者在视窗菜单条:Rster---Attributes)
→打开Raster Attribute Editor对话框

属性表中的11个记录分别对应产生的10个类及Unclassified类,每个记录都有一系列的字段。如果想看到所有字段,需要用鼠标拖动浏览条,为了方便看到关心的重要字段,需要调整字段显示顺序。
→ Raster Attribute Editor对话框菜单条:Edit→Column Properties →column properties对话框
→在Column Properties对话框中调整字段顺序,最后使Histogram、opacity、 color、 class_names四个手段的显示顺序依次排在前面。
→点击OK按钮(关闭Column properties对话框)
→返回Raster Attribute Editor对话框(lz-isodat.img的属性表)

第三步:定义类别颜色
初始分类图像是灰度图像,各类别的显示灰度是系统自动赋予的,为了提高分类图像的直观表达效果,需要重新定义类别颜色。
→ 在Raster Attribute Editor窗口(germtm_isodata的属性表):
→单击一个类别的Row字段从而选择该类别。
→右击该类别的Color字段(颜色显示区)
→在As Is色表菜单选择一种合适颜色
→重复以上操作,直到给所有类别赋予合适的颜色。

第四步:设置不透明度
→点击一个类别的ROW字段从而选择该类别
→点击该类别的Opacity字段从而进入输入状态
→在该类别的Opacity 字段中输入1,并按回车键
此时,在视窗中只有要分析类别的颜色显示在原图像的上面,其它类别都是透明的。

第五步:确定类别专题意义及其准确程度
视窗菜单条:Utility→flicker→viewer Flicker对话框→Auto Mode
本小步是设置分类图像在原图像修背景上闪烁,观察它与背景图像之间的关系从而断定该类别的专题意义,并分析其分类准确与否。

第六步:标注类别的名称和相应颜色
Raster Attribute Editor对话框
→点击刚才分析类别的ROW字段从而选择该类别
→点击该类别的class Names字段从而进入输入状态
→在该类别的Class Names字段中输入其专题意义(如居民区),并按回车键
→右键点击该类别的Color字段(颜色显示区)
→As Is菜单→选择一种合适的颜色
重复以上4、5、6三步直到对所有类别都进行了分析与处理。注意,在进行分类叠加分析时,一次可以选择一个类别,也可以选择多个类别同时进行。

第七步:类别合并与属性重定义
如果上述各步骤操作的过程中发现分类方案不够理想,需要进行分类后处理,诸如进行聚类分析、过滤分析、去处分析和分类重编码等特别是有由于给定的初始分类的数量比较多,往往需要进行类别的合并操作。
具体操作步骤:
第一步 打开重编码对话框—单击interpreter →GIS analysis →recode
在recode对话框中设置一下参数

(1)确定输入文件为germtm_isodata.img
(2)输出文件为germtm_recode.img
(3)设置新的分类编码(setup recode)
(4)根据需要改变的字段取值
(5)单击ok
在窗口中打开重编码后的分类专题图像,查看分类属性表。

❻ 请问ISODATA算法为什么有一步转向条件为“J为偶数”

因为此时分裂或者合并都可以,用偶数次时合并,奇数次时分裂,可以使得两种操作机会均等。

❼ isodata算法和k均值算法的区别

k均值聚类:---------一种硬聚类算法,隶属度只有两个取值0或1,提出的基本根据是“类内误差平方和最小化”准则; 模糊的c均值聚类算法:-------- 一种模糊聚类算法,是k均值聚类算法的推广形式,隶属度取值为[0 1]区间内的任何一个数,提出的基本...

❽ 实验十八 遥感图像非监督分类处理

一、实验目的

通过使用ENVI的两种遥感非监督分类器——IsoData非监督分类和K-Means非监督分类命令,加深对遥感非监督分类原理和对地质应用的理解,了解其技术实现过程,初步掌握其ENVI功能命令的基本使用操作。

二、实验内容

①桂林市TM 遥感影像数据IsoData非监督分类;②桂林市TM 遥感影像数据KMeans非监督分类;③IsoData非监督分类与K-Means非监督分类效果比较分析。

三、实验要求

(①预习ISODATA和K-Means两种算法原理;②掌握ISODATA和K-Means分类处理的基本操作;③对两种分类结果进行比较分析;④编写实验报告。

四、技术条件

①微型计算机;②桂林市TM 遥感影像数据;③ENVI软件;④Photoshop软件(ver.6.0以上)和ACDSee软件(ver.4.0以上)。

五、实验步骤

非监督分类是根据图像数据的本身统计特征及点群的情况,从纯统计学的角度对图像数据进行类别划分。非监督分类不需要事先给定类别,由图像数据的统计特征来决定,即同类地物在相同的成像条件下具有相同或相近的光谱特征(如DN 值),归属于同一个光谱空间区域;不同地物由于光谱信息特征不同,归属于不同的光谱空间区域。

非监督分类一般可分为四个步骤:执行非监督分类、类别定义、合并子类和评价结果。

(一)执行非监督分类

ENVI有ISODATA和K-Means两种非监督分类方法。

1.ISODATA非监督分类

ISODATA(iterative self-organizing data analysis technique)属于聚类分析方法。是按照像元之间的联系程度(亲疏程度)来进行归类的一种多元统计分析方法。ISODATA非监督分类计算数据空间中均匀分布的类均值,然后用最小距离技术将剩余像元迭代聚集,每次迭代都重新计算均值,且根据所得的新均值,对像元进行再分类。具体操作步骤如下:

在ENVI主菜单栏中选择“Classification>Unsupervised>ISODATA”,在“Classificatoin Input File”对话框中选择待分类遥感影像,打开“ISODATA Parameters”对话框,如图18-1所示。

图18-1 ISODATA参数对话框

对图18-1中的参数进行如下说明:

(1) Number of Classes:类数范围(最小值和最大值),一般输入最小数量不能小于最终分类数量,最大数量为最终分类数量的2~3倍。

(2) Maximum Iterations:最大迭代次数值,迭代次数越大,得到的结果越精确。

(3) Change Threshold%(0~100):变化阈值(0~100%),当每一类的变换像元数小于阈值时,结束迭代过程,该值越小得到的结果越精确。

(4) Minimum #Pixel in Class:形成一类需要的最少像元数,如果某一类中的像元数少于最少像元数,该类将被删除,其中的像元被归并到距离最近的类中。

(5) Maximum Class Stdv:最大分类标准差,以像素值为单位,如果某一类的标准差比该阈值大,该类将被拆分成两类。

(6) Minimum Class Distance:类均值之间的最小距离,如果类均值之间的距离小于输入的最小值,则这一类就会被合并。

(7) Maximum #Merge Pairs:合并成对的最大数。

(8)Maximum Stdev From Mean:距离类别均值的最大标准差,为可选项,筛选小于这个标准差的像元参与分类。

(9) Maximum Distance Error:允许的最大距离误差,为可选项,筛选小于这个最大距离误差的像元参与分类。

(10)选择输出路径及文件名,单击【OK】按钮,执行ISODATA非监督分类。

2.K-Means非监督分类

K-Means算法接受输入量K;然后将n个数据对象划分为K个聚类以便使所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。具体操作步骤如下:

在ENVI主菜单栏中选择“Classification>Unsupervised>K-Means”,在“Classification Input File”对话框中选择待分类遥感影像,打开“K-Means Parameters”对话框,如图18-2所示。

图18-2 K-Means分类器参数设置对话框

(1) Number of Classes:分类数量,一般输入为最终分类数量的2~3倍。

(2) Maximum Iterations:最大迭代次数值,迭代次数越大,得到的结果越精确。

(3) Maximum Stdev From Mean:距离类别均值的最大标准差,为可选项,筛选小于这个标准差的像元参与分类。

(4) Maximum Distance Error:允许的最大距离误差,为可选项,筛选小于这个最大距离误差的像元参与分类。

(5)选择输出路径及文件名,单击【OK】按钮,执行K-Means非监督分类。

(二)定义类别与子类合并

执行非监督分类后,得到的只是一个初步的分类结果,需要进行类别定义域合并子类的操作。

1.类别定义

类别定义的根据可以通过更高分辨率图像上目视解译获得,也可以通过野外实地调查获得。

(1)打开分类图像即灌阳地区QuickBird遥感数据,并使之显示在“Display”中。

(2)在分类图像的主窗口中,选择“Overlay>Classification”,在“Interactive Class Tool Input File”对话框中选择非监督分类结果,单击【OK】按钮打开“Interactive Class Tool”对话框,如图18-3所示。

图18-3 交互式分类工具对话框

(3)在“Interactive Class Tool”对话框中,勾选类别前面的“On”选择框,就能将此类结果叠加显示在“Display”分类图像窗口上,识别此分类类别。

(4)在“Interactive Class Tool”对话框中,选择“Options>Edit Class Colors/Names”,打开“Class Color Map Editing”对话框,如图18-4所示。

在“Class Color Map Editnig”对话框中,选择对应的类别,在“Class Name”中输入重新定义的类别名称,同时可以修改此类别显示的颜色,修改后点击【OK】按钮完成修改。

(5)重复步骤(3)~步骤(4),定义其他类别。

(6)完成各类别定义后,在“Interactive Class Tool”对话框中,选择“File>Save Change to File”,保存修改结果。

2.合并子类

在选择非监督分类类别数量时,一般选择为最终分类数量的2~3倍,因此在定义类别之后,需要将相同类别合并。

(1)在 ENVI 主菜单栏中,选择“Classification > Post Classification > Combine Classes”,在“Combine Classes Input File”对话框中选择定义好的分类结果,单击【OK】按钮打开“Combine Classes Parameters”对话框(图18-5)。

图18-4 编辑分类名称和颜色对话框

图18-5 分类类别的合并对话框

(2)在“Combine Classes Parameters”对话框中,从“Select Input Class”中选择合并的类别,从“Select Output Class”中选择并入的类别,单击【Add Combination】按钮添加到合并方案中,合并方案显示在“Combine Classes”列表中。

(3)合并方案确定后,点击【OK】按钮,打开“Combine Classes output”对话框,在“Remove Empty Classes”选项中选择“Yes”,将无用类移除。

(4)选择输出合并结果路径及文件夹名,点击【OK】按钮,执行合并子类。

(三)分类后处理和评价分类结果

分类后处理和评价分类结果的方法同监督分类一样,可参考实验十七中的“遥感影像监督分类”。

完成遥感影像非监督分类后,分别利用ISODATA 和K-Means非监督分类方法对灌阳地区QuickBird遥感影像进行非监督分类处理,利用混淆矩阵对两种分类结果进行评价,得出总体分类精度和Kappa系数。比较两种分类结果,用W ORD文件记录,取名为《灌阳地区QuickBird遥感影像两种非监督分类方法分类结果评价》,存入自己的工作文件夹。

六、实验报告

(1)简述实验过程。

(2)回答问题:①根据实验操作步骤及各步骤之间的关系,分析两种非监督分类方法具有的共同特点。②通过目视解译定性比较两种非监督分类方法的效果。

实验报告格式见附录一。

❾ 什么是ISODATA

ISODATA 是一种遥感图像非监督分类法。全称‘迭代自组织数据分析技术’(Iterative Self-Organizing Data Analysis Technique )。 ISODATA使用最小光谱距离方程产生聚类,此方法以随机的类中心或已知信号集中心The ISODATA 的实质是用某种算法生成初始类别作为“种子”依据某个判别规则进行自动迭代聚类的过程。在两次迭代的之间对上一次迭代的聚类结果进行统计分析,根据统计参数对已有类别进行取消、分裂、合并处理,并继续进行下一次迭代,直至超过最大迭代次数或者满足分类参数(阈值),完成分类过程。

阅读全文

与isodata聚类算法相关的资料

热点内容
约束边缘构件钢筋加密绑扎 浏览:994
单片机的表 浏览:699
南京程序员喷香水事件 浏览:647
关掉服务器为什么还是被d 浏览:991
ip反查域名命令 浏览:299
编译软件c语言 浏览:143
大同压缩机有限公司 浏览:68
什么是win32编程 浏览:904
应用程序怎么提取源码 浏览:190
如何查询公司网站服务器地址 浏览:10
微博群里的图片在哪个文件夹 浏览:274
半导体除湿压缩机除湿 浏览:108
程序员失恋怎么办 浏览:727
怎么把android编译成mk 浏览:897
遗传算法个体变少 浏览:267
货拉拉app在哪里选收藏司机 浏览:543
如何从安卓转移照片到ipad 浏览:499
马士兵java全集 浏览:92
农行APP未付款订单怎么付 浏览:160
生成编译 浏览:595