1. BP算法及其改进
传统的BP算法及其改进算法的一个很大缺点是:由于其误差目标函数对于待学习的连接权值来说非凸的,存在局部最小点,对网络进行训练时,这些算法的权值一旦落入权值空间的局部最小点就很难跳出,因而无法达到全局最小点(即最优点)而使得网络训练失败。针对这些缺陷,根据凸函数及其共轭的性质,利用Fenchel不等式,使用约束优化理论中的罚函数方法构造出了带有惩罚项的新误差目标函数。
用新的目标函数对前馈神经网络进行优化训练时,隐层输出也作为被优化变量。这个目标函数的主要特点有:
1.固定隐层输出,该目标函数对连接权值来说是凸的;固定连接权值,对隐层输出来说是凸的。这样在对连接权值和隐层输出进行交替优化时,它们所面对的目标函数都是凸函数,不存在局部最小的问题,算法对于初始权值的敏感性降低;
2.由于惩罚因子是逐渐增大的,使得权值的搜索空间变得比较大,从而对于大规模的网络也能够训练,在一定程度上降低了训练过程陷入局部最小的可能性。
这些特性能够在很大程度上有效地克服以往前馈网络的训练算法易于陷入局部最小而使网络训练失败的重大缺陷,也为利用凸优化理论研究前馈神经网络的学习算法开创了一个新思路。在网络训练时,可以对连接权值和隐层输出进行交替优化。把这种新算法应用到前馈神经网络训练学习中,在学习速度、泛化能力、网络训练成功率等多方面均优于传统训练算法,如经典的BP算法。数值试验也表明了这一新算法的有效性。
本文通过典型的BP算法与新算法的比较,得到了二者之间相互关系的初步结论。从理论上证明了当惩罚因子趋于正无穷大时新算法就是BP算法,并且用数值试验说明了惩罚因子在网络训练算法中的作用和意义。对于三层前馈神经网络来说,惩罚因子较小时,隐层神经元局部梯度的可变范围大,有利于连接权值的更新;惩罚因子较大时,隐层神经元局部梯度的可变范围小,不利于连接权值的更新,但能提高网络训练精度。这说明了在网络训练过程中惩罚因子为何从小到大变化的原因,也说明了新算法的可行性而BP算法则时有无法更新连接权值的重大缺陷。
矿体预测在矿床地质中占有重要地位,由于输入样本量大,用以往前馈网络算法进行矿体预测效果不佳。本文把前馈网络新算法应用到矿体预测中,取得了良好的预期效果。
本文最后指出了新算法的优点,并指出了有待改进的地方。
关键词:前馈神经网络,凸优化理论,训练算法,矿体预测,应用
Feed forward Neural Networks Training Algorithm Based on Convex Optimization and Its Application in Deposit Forcasting
JIA Wen-chen (Computer Application)
Directed by YE Shi-wei
Abstract
The paper studies primarily the application of convex optimization theory and algorithm for feed forward neural networks’ training and convergence performance.
It reviews the history of feed forward neural networks, points out that the training of feed forward neural networks is essentially a non-linear problem and introces BP algorithm, its advantages as well as disadvantages and previous improvements for it. One of the big disadvantages of BP algorithm and its improvement algorithms is: because its error target function is non-convex in the weight values between neurons in different layers and exists local minimum point, thus, if the weight values enter local minimum point in weight values space when network is trained, it is difficult to skip local minimum point and reach the global minimum point (i.e. the most optimal point).If this happening, the training of networks will be unsuccessful. To overcome these essential disadvantages, the paper constructs a new error target function including restriction item according to convex function, Fenchel inequality in the conjugate of convex function and punishment function method in restriction optimization theory.
When feed forward neural networks based on the new target function is being trained, hidden layers’ outputs are seen as optimization variables. The main characteristics of the new target function are as follows:
1.With fixed hidden layers’ outputs, the new target function is convex in connecting weight variables; with fixed connecting weight values, the new target function is convex in hidden layers’ outputs. Thus, when connecting weight values and hidden layers’ outputs are optimized alternately, the new target function is convex in them, doesn’t exist local minimum point, and the algorithm’s sensitiveness is reced for original weight values .
2.Because the punishment factor is increased graally, weight values ’ searching space gets much bigger, so big networks can be trained and the possibility of entering local minimum point can be reced to a certain extent in network training process.
Using these characteristics can overcome efficiently in the former feed forward neural networks’ training algorithms the big disadvantage that networks training enters local minimum point easily. This creats a new idea for feed forward neural networks’ learning algorithms by using convex optimization theory .In networks training, connecting weight variables and hidden layer outputs can be optimized alternately. The new algorithm is much better than traditional algorithms for feed forward neural networks. The numerical experiments show that the new algorithm is successful.
By comparing the new algorithm with the traditional ones, a primary conclusion of their relationship is reached. It is proved theoretically that when the punishment factor nears infinity, the new algorithm is BP algorithm yet. The meaning and function of the punishment factor are also explained by numerical experiments. For three-layer feed forward neural networks, when the punishment factor is smaller, hidden layer outputs’ variable range is bigger and this is in favor to updating of the connecting weights values, when the punishment factor is bigger, hidden layer outputs’ variable range is smaller and this is not in favor to updating of the connecting weights values but it can improve precision of networks. This explains the reason that the punishment factor should be increased graally in networks training process. It also explains feasibility of the new algorithm and BP algorithm’s disadvantage that connecting weigh values can not be updated sometimes.
Deposit forecasting is very important in deposit geology. The previous algorithms’ effect is not good in deposit forecasting because of much more input samples. The paper applies the new algorithm to deposit forecasting and expectant result is reached.
The paper points out the new algorithm’s strongpoint as well as to-be-improved places in the end.
Keywords: feed forward neural networks, convex optimization theory, training algorithm, deposit forecasting, application
传统的BP算法及其改进算法的一个很大缺点是:由于其误差目标函数对于待学习的连接权值来说非凸的,存在局部最小点,对网络进行训练时,这些算法的权值一旦落入权值空间的局部最小点就很难跳出,因而无法达到全局最小点(即最优点)而使得网络训练失败。针对这些缺陷,根据凸函数及其共轭的性质,利用Fenchel不等式,使用约束优化理论中的罚函数方法构造出了带有惩罚项的新误差目标函数。
用新的目标函数对前馈神经网络进行优化训练时,隐层输出也作为被优化变量。这个目标函数的主要特点有:
1.固定隐层输出,该目标函数对连接权值来说是凸的;固定连接权值,对隐层输出来说是凸的。这样在对连接权值和隐层输出进行交替优化时,它们所面对的目标函数都是凸函数,不存在局部最小的问题,算法对于初始权值的敏感性降低;
2.由于惩罚因子是逐渐增大的,使得权值的搜索空间变得比较大,从而对于大规模的网络也能够训练,在一定程度上降低了训练过程陷入局部最小的可能性。
这些特性能够在很大程度上有效地克服以往前馈网络的训练算法易于陷入局部最小而使网络训练失败的重大缺陷,也为利用凸优化理论研究前馈神经网络的学习算法开创了一个新思路。在网络训练时,可以对连接权值和隐层输出进行交替优化。把这种新算法应用到前馈神经网络训练学习中,在学习速度、泛化能力、网络训练成功率等多方面均优于传统训练算法,如经典的BP算法。数值试验也表明了这一新算法的有效性。
本文通过典型的BP算法与新算法的比较,得到了二者之间相互关系的初步结论。从理论上证明了当惩罚因子趋于正无穷大时新算法就是BP算法,并且用数值试验说明了惩罚因子在网络训练算法中的作用和意义。对于三层前馈神经网络来说,惩罚因子较小时,隐层神经元局部梯度的可变范围大,有利于连接权值的更新;惩罚因子较大时,隐层神经元局部梯度的可变范围小,不利于连接权值的更新,但能提高网络训练精度。这说明了在网络训练过程中惩罚因子为何从小到大变化的原因,也说明了新算法的可行性而BP算法则时有无法更新连接权值的重大缺陷。
矿体预测在矿床地质中占有重要地位,由于输入样本量大,用以往前馈网络算法进行矿体预测效果不佳。本文把前馈网络新算法应用到矿体预测中,取得了良好的预期效果。
本文最后指出了新算法的优点,并指出了有待改进的地方。
关键词:前馈神经网络,凸优化理论,训练算法,矿体预测,应用
Feed forward Neural Networks Training Algorithm Based on Convex Optimization and Its Application in Deposit Forcasting
JIA Wen-chen (Computer Application)
Directed by YE Shi-wei
Abstract
The paper studies primarily the application of convex optimization theory and algorithm for feed forward neural networks’ training and convergence performance.
It reviews the history of feed forward neural networks, points out that the training of feed forward neural networks is essentially a non-linear problem and introces BP algorithm, its advantages as well as disadvantages and previous improvements for it. One of the big disadvantages of BP algorithm and its improvement algorithms is: because its error target function is non-convex in the weight values between neurons in different layers and exists local minimum point, thus, if the weight values enter local minimum point in weight values space when network is trained, it is difficult to skip local minimum point and reach the global minimum point (i.e. the most optimal point).If this happening, the training of networks will be unsuccessful. To overcome these essential disadvantages, the paper constructs a new error target function including restriction item according to convex function, Fenchel inequality in the conjugate of convex function and punishment function method in restriction optimization theory.
When feed forward neural networks based on the new target function is being trained, hidden layers’ outputs are seen as optimization variables. The main characteristics of the new target function are as follows:
1.With fixed hidden layers’ outputs, the new target function is convex in connecting weight variables; with fixed connecting weight values, the new target function is convex in hidden layers’ outputs. Thus, when connecting weight values and hidden layers’ outputs are optimized alternately, the new target function is convex in them, doesn’t exist local minimum point, and the algorithm’s sensitiveness is reced for original weight values .
2.Because the punishment factor is increased graally, weight values ’ searching space gets much bigger, so big networks can be trained and the possibility of entering local minimum point can be reced to a certain extent in network training process.
Using these characteristics can overcome efficiently in the former feed forward neural networks’ training algorithms the big disadvantage that networks training enters local minimum point easily. This creats a new idea for feed forward neural networks’ learning algorithms by using convex optimization theory .In networks training, connecting weight variables and hidden layer outputs can be optimized alternately. The new algorithm is much better than traditional algorithms for feed forward neural networks. The numerical experiments show that the new algorithm is successful.
By comparing the new algorithm with the traditional ones, a primary conclusion of their relationship is reached. It is proved theoretically that when the punishment factor nears infinity, the new algorithm is BP algorithm yet. The meaning and function of the punishment factor are also explained by numerical experiments. For three-layer feed forward neural networks, when the punishment factor is smaller, hidden layer outputs’ variable range is bigger and this is in favor to updating of the connecting weights values, when the punishment factor is bigger, hidden layer outputs’ variable range is smaller and this is not in favor to updating of the connecting weights values but it can improve precision of networks. This explains the reason that the punishment factor should be increased graally in networks training process. It also explains feasibility of the new algorithm and BP algorithm’s disadvantage that connecting weigh values can not be updated sometimes.
Deposit forecasting is very important in deposit geology. The previous algorithms’ effect is not good in deposit forecasting because of much more input samples. The paper applies the new algorithm to deposit forecasting and expectant result is reached.
The paper points out the new algorithm’s strongpoint as well as to-be-improved places in the end.
Keywords: feed forward neural networks, convex optimization theory, training algorithm, deposit forecasting, application
BP算法及其改进
2.1 BP算法步骤
1°随机抽取初始权值ω0;
2°输入学习样本对(Xp,Yp),学习速率η,误差水平ε;
3°依次计算各层结点输出opi,opj,opk;
4°修正权值ωk+1=ωk+ηpk,其中pk=,ωk为第k次迭代权变量;
5°若误差E<ε停止,否则转3°。
2.2 最优步长ηk的确定
在上面的算法中,学习速率η实质上是一个沿负梯度方向的步长因子,在每一次迭代中如何确定一个最优步长ηk,使其误差值下降最快,则是典型的一维搜索问题,即E(ωk+ηkpk)=(ωk+ηpk)。令Φ(η)=E(ωk+ηpk),则Φ′(η)=dE(ωk+ηpk)/dη=E(ωk+ηpk)Tpk。若ηk为(η)的极小值点,则Φ′(ηk)=0,即E(ωk+ηpk)Tpk=-pTk+1pk=0。确定ηk的算法步骤如下
1°给定η0=0,h=0.01,ε0=0.00001;
2°计算Φ′(η0),若Φ′(η0)=0,则令ηk=η0,停止计算;
3°令h=2h, η1=η0+h;
4°计算Φ′(η1),若Φ′(η1)=0,则令ηk=η1,停止计算;
若Φ′(η1)>0,则令a=η0,b=η1;若Φ′(η1)<0,则令η0=η1,转3°;
5°计算Φ′(a),若Φ′(a)=0,则ηk=a,停止计算;
6°计算Φ′(b),若Φ′(b)=0,则ηk=b,停止计算;
7°计算Φ′(a+b/2),若Φ′(a+b/2)=0,则ηk=a+b/2,停止计算;
若Φ′(a+b/2)<0,则令a=a+b/2;若Φ′(a+b/2)>0,则令b=a+b/2
8°若|a-b|<ε0,则令,ηk=a+b/2,停止计算,否则转7°。
2.3 改进BP算法的特点分析
在上述改进的BP算法中,对学习速率η的选取不再由用户自己确定,而是在每次迭代过程中让计算机自动寻找最优步长ηk。而确定ηk的算法中,首先给定η0=0,由定义Φ(η)=E(ωk+ηpk)知,Φ′(η)=dE(ωk+ηpk)/dη=E(ωk+ηpk)Tpk,即Φ′(η0)=-pTkpk≤0。若Φ′(η0)=0,则表明此时下降方向pk为零向量,也即已达到局部极值点,否则必有Φ′(η0)<0,而对于一维函数Φ(η)的性质可知,Φ′(η0)<0则在η0=0的局部范围内函数为减函数。故在每一次迭代过程中给η0赋初值0是合理的。
改进后的BP算法与原BP算法相比有两处变化,即步骤2°中不需给定学习速率η的值;另外在每一次修正权值之前,即步骤4°前已计算出最优步长ηk。
2. 人工智能算法
编程与推理没有关系,编程的智能建立在“是非”之上,以中断判断为基础。推箱子有很多种判断,比如2*2*2……结果会特别多,而编程只是控制其中某一步,这样每一步都有2种情况,相乘后,软件就会有很多种通过方法,太多了。比如棋类软件,我们只要控制某些局部,这些局部组成了“人工智能”,而局部本身是“非智能”的,这么说明白?
即使是人脑的智能,本质上还是电信号的中断处理,处理的速度“即人的聪明”,与人脑中数据库的优化与数据量有关,也就是人脑的智能,其实是机械电子搜索匹配过程……
3. 人工智能需要多快的运算速度
没有概念...
人脑比计算机运算速度快多了, 人脑要同时兼顾多少外部信息的处理呀, 如果把这些信息全都输入电脑的话, 目前的电脑都运算不了.
4. 人工智能是什么 人工智能算法是什么
人工智能和人工智能算法的官方定义相信你已经看过了。
就我个人理解。人工智能,是人类赋予了本身不具备思考学习能力的机器/算法一些学习和思考的能力。人工智能算法没有统一定义,其实就是神经网络算法和机器学习算法的统称。同时,注意人工智能算法和智能算法大不一样,智能算法主要是指一系列的启发式算法。
希望对你有帮助
5. 神经网络和遗传算法有什么关系
遗传算法是一种智能优化算法,神经网络是人工智能算法的一种。
可以将遗传算法用于神经网络的参数优化中。
6. 人工智能老师可以让学生的学习效率提升十倍吗
6月15日,乂学教育首席科学家崔炜在“2018全球智能+新商业峰会”之“智能+教育峰会”时表示,每个孩子身边都可以拥有一个懂他的超级AI老师,好老师有了人工智能的加持,可以对学生学习的薄弱环节进行精准诊断,从而让学生的学习效率提升10倍。
成立于2014年的乂学教育,是国内第一家将人工智能自适应学习技术应用在K12教育领域的人工智能公司。乂学成功开发了国内第一个拥有完整自主知识产权、以高级算法为核心的人工智能自适应学习引擎松鼠AI。乂学教育集团松鼠AI品牌创始人栗浩洋是中国自动化学会智慧教育专委会副主任,中国自动化学会的第一届理事长是钱学森院士,栗浩洋的目标是推动人工智能在教育行业的深度应用,用创新性的人工智能教学去改变中国孩子的命运。
7. 人工智能培训一般要多久,人工智能要学习哪些内容
目前国家相继出台了一些扶持人工智能发展的政策,人工智能正处于发展的红利期,所以越早学习就越有就业优势。人工智能火起来就是这一两年的事儿,因此不管是上市企业,还是一些中小型企业,对于人工智能人才的需求量都非常大。所以,很多人也都想加入到这个行业中来。人工智能培训机构学什么内容?
阶段一是Python语言(用时5周,包括基础语法、面向对象、高级课程、经典课程);阶段二是Linux初级(用时1周,包括Linux系统基本指令、常用服务安装);
阶段三是Web开发之Diango(5周+2周前端+3周diango);阶段四是Web开发之Flask(用时2周);阶段五是Web框架之Tornado(用时1周);阶段六是docker容器及服务发现(用时2周);阶段七是爬虫(用时2周);阶段八是数据挖掘和人工智能(用时3周)。
在人工智能研究的过程中,机器学习是行业研究的核心,也是人工智能目标实现的根本途径,是当前人工智能发展的主要瓶颈。人工智能已经发展了很长时间,它在未来的发展问题是该学科有关研究人员讨论的重点。
从现阶段的发展情况来说,未来人工智能可能会更好地为人类服务、与人类平等等。人工智能属于全世界科研发展的前沿技术,发展过程中与信息技术、计算机技术、精密制造技术、互联网技术密切相关,对各行业、各领域的发展都有一定的影响,在人工智能发展过程中要认真、深刻地研究其未来的发展方向。
8. 人工智能算法是什么
人工智能算法主要是机器学习的算法
积极学习是一种通过数据来调优模型的方法论,模型的精度达到可以使用了,那么他就能够完成一些预判的任务,很多现实问题都可以转化成一个一个的预判类型
人工智能算法,尤其是深度学习,需要大量的数据,算法其实就是模型
9. 人工智能算法
推荐教程:Python教程
人工智能英文简称AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能算法也被称之为软计算 ,它是人们受自然界规律的启迪,根据其原理模拟求解问题的算法。
目前的人工智能算法有人工神经网络遗传算法、模拟退火算法、群集智能蚁群算法和例子群算等等。
随着人工智能算法的不断优化,可以不仅可以帮助我们提高工作效率、改善我们的生活水平,同时也能为我们在庞大的现代信息资源中迅速的找到我们所需要的信息。
10. 人工智能算法有哪些
人工智能算法有:决策树、随机森林算法、逻辑回归、SVM、朴素贝叶斯、K最近邻算法、K均值算法、Adaboost算法、神经网络、马尔可夫。