导航:首页 > 源码编译 > 有理指数幂的运算法则

有理指数幂的运算法则

发布时间:2022-04-27 13:20:46

⑴ 有理数指数幂运算法则中,底数为什么大于0 如题

因为如果底数等于0,则负指数时,分母为0,无意义
若底数小于0,则出现分数指数时,就相当于开方,若果分母是偶数,则就是开偶数次方,此时若底数是负数的话是没有意义的.
所以底数要大于0

⑵ 指数幂的指数幂的运算法则

口诀:

指数加减底不变,同底数幂相乘除.

指数相乘底不变,幂的乘方要清楚.

积商乘方原指数,换底乘方再乘除.

非零数的零次幂,常值为 1不糊涂.

负整数的指数幂,指数转正求倒数.

看到分数指数幂,想到底数必非负.

乘方指数是分子,根指数要当分母.

说明:

拓展资料:

一般地,在数学上我们把n个相同的因数a相乘的积记做a^n。这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在a^n中,a叫做底数,n叫做指数。a^n读作“a的n次方”或“a的n次幂“。

一个数可以看做这个数本身的一次方。例如,5就是5^1,指数1通常省略不写。二次方也叫做平方,如5^2通常读做”5的平方“;三次方也叫做立方,如5^3可读做”5的立方“。


⑶ 指数幂运算法则 是什么

1.同底数幂的乘法:

拓展资料:

法则口诀

同底数幂的乘法:底数不变,指数相加幂的乘方;

同底数幂的除法:底数不变,指数相减幂的乘方;

幂的指数乘方:等于各因数分别乘方的积商的乘方

分式乘方:分子分母分别乘方,指数不变。

⑷ 指数幂的运算法则是什么

(1)任何不等于零的数的零次幂都等于1。

即(a≠0)。

(2)任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。

即(a≠0,p是正整数)。

(规定了零指数幂与负整数指数幂的意义,就把指数的概念从正整数推广到了整数。正整数指数幂的各种运算法则对整数指数幂都适用。)

1.同底数幂相乘,底数不变,指数相加。

即(m,n都是有理数)。

2.幂的乘方,底数不变,指数相乘。

即(m,n都是有理数)。

3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

即=·(m,n都是有理数)。

4.分式乘方,分子分母各自乘方

即(b≠0)。

除法

1.同底数幂相除,底数不变,指数相减。

即(a≠0,m,n都是有理数)。

⑸ 幂函数的基本运算有哪些

1、同底数幂的乘法:

2、幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n。

3、同底数幂的除法:

(1)同底数幂的除法:am÷an=a(m-n)(a≠0, m, n均为正整数,并且m>n)。

(2)零指数:a0=1 (a≠0)。

(3)负整数指数幂:a-p= (a≠0, p是正整数)①当a=0时没有意义,0-2, 0-3都无意义。

法则口诀:

同底数幂的乘法:底数不变,指数相加幂的乘方;

同底数幂的除法:底数不变,指数相减幂的乘方;

幂的指数乘方:等于各因数分别乘方的积商的乘方

分式乘方:分子分母分别乘方,指数不变。

(5)有理指数幂的运算法则扩展阅读

计算:x5·xn-3·x4-3x2·xn·x4

解:x^5·x^n-3·x^4-3x^2·x^n·x^4

分析:

①先做乘法再做减法

=x(5+n-3+4)-3x(2+n+4 )

②运算结果指数能合并的要合并

=x(6+n)-3x(6+n)

③3x2即为3·(x2)

=(1-3)x6+n④x6+n,与-3x6+n是同类项,

=-2x6+n合并时将系数进行运算(1-3)=-2。

⑹ 指数运算的公式有哪些

1、同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。


2、同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。


3、幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)。


4、积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。


基本的函数的导数:


1、y=a^x,y'=a^xlna。


2、y=c(c为常数),y'=0。


3、y=x^n,y'=nx^(n-1)。


4、y=e^x,y'=e^x。


5、y=logax(a为底数,x为真数),y'=1/x*lna。


6、y=lnx,y'=1/x。


7、y=sinx,y'=cosx。


8、y=cosx,y'=-sinx。


9、y=tanx,y'=1/cos^2x。



(6)有理指数幂的运算法则扩展阅读:


记忆口诀


有理数的指数幂,运算法则要记住。


指数加减底不变,同底数幂相乘除。


指数相乘底不变,幂的乘方要清楚。


积商乘方原指数,换底乘方再乘除。


非零数的零次幂,常值为1不糊涂。


负整数的指数幂,指数转正求倒数。


看到分数指数幂,想到底数必非负。


乘方指数是分子,根指数要当分母。


⑺ 数学公式

1. 元素与集合的关系
, .
2.德摩根公式
.
3.包含关系

4.容斥原理

.
5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.
6.二次函数的解析式的三种形式
(1)一般式 ;
(2)顶点式 ;
(3)零点式 .
7.解连不等式 常有以下转化形式

.
8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .
9.闭区间上的二次函数的最值
二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:
(1)当a>0时,若 ,则 ;
, , .
(2)当a<0时,若 ,则 ,若 ,则 , .
10.一元二次方程的实根分布
依据:若 ,则方程 在区间 内至少有一个实根 .
设 ,则
(1)方程 在区间 内有根的充要条件为 或 ;
(2)方程 在区间 内有根的充要条件为 或 或 或 ;
(3)方程 在区间 内有根的充要条件为 或 .
11.定区间上含参数的二次不等式恒成立的条件依据
(1)在给定区间 的子区间 (形如 , , 不同)上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(2)在给定区间 的子区间上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(3) 恒成立的充要条件是 或 .
12.真值表
p q 非p p或q p且q
真 真 假 真 真
真 假 假 真 假
假 真 真 真 假
假 假 真 假 假
13.常见结论的否定形式
原结论 反设词 原结论 反设词
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有 个
至多有( )个

小于 不小于 至多有 个
至少有( )个

对所有 ,
成立 存在某 ,
不成立




对任何 ,
不成立 存在某 ,
成立




14.四种命题的相互关系

原命题 互逆 逆命题
若p则q 若q则p
互 互
互 为 为 互
否 否
逆 逆
否 否
否命题 逆否命题
若非p则非q 互逆 若非q则非p

15.充要条件
(1)充分条件:若 ,则 是 充分条件.
(2)必要条件:若 ,则 是 必要条件.
(3)充要条件:若 ,且 ,则 是 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
16.函数的单调性
(1)设 那么
上是增函数;
上是减函数.
(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
17.如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数.
18.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
19.若函数 是偶函数,则 ;若函数 是偶函数,则 .
20.对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与 的图象关于直线 对称.
21.若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数.
22.多项式函数 的奇偶性
多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.
多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.
23.函数 的图象的对称性
(1)函数 的图象关于直线 对称
.
(2)函数 的图象关于直线 对称
.
24.两个函数图象的对称性
(1)函数 与函数 的图象关于直线 (即 轴)对称.
(2)函数 与函数 的图象关于直线 对称.
(3)函数 和 的图象关于直线y=x对称.
25.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象.
26.互为反函数的两个函数的关系
.
27.若函数 存在反函数,则其反函数为 ,并不是 ,而函数 是 的反函数.
28.几个常见的函数方程
(1)正比例函数 , .
(2)指数函数 , .
(3)对数函数 , .
(4)幂函数 , .
(5)余弦函数 ,正弦函数 , ,
.
29.几个函数方程的周期(约定a>0)
(1) ,则 的周期T=a;
(2) ,
或 ,
或 ,
或 ,则 的周期T=2a;
(3) ,则 的周期T=3a;
(4) 且 ,则 的周期T=4a;
(5)
,则 的周期T=5a;
(6) ,则 的周期T=6a.
30.分数指数幂
(1) ( ,且 ).
(2) ( ,且 ).
31.根式的性质
(1) .
(2)当 为奇数时, ;
当 为偶数时, .
32.有理指数幂的运算性质
(1) .
(2) .
(3) .
注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
( ,且 , ,且 , ).
推论 ( ,且 , ,且 , , ).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1) ;
(2) ;
(3) .
36.设函数 ,记 .若 的定义域为 ,则 ,且 ;若 的值域为 ,则 ,且 .对于 的情形,需要单独检验.
37. 对数换底不等式及其推广
若 , , , ,则函数
(1)当 时,在 和 上 为增函数.
, (2)当 时,在 和 上 为减函数.
推论:设 , , ,且 ,则
(1) .
(2) .
38. 平均增长率的问题
如果原来产值的基础数为N,平均增长率为 ,则对于时间 的总产值 ,有 .
39.数列的同项公式与前n项的和的关系
( 数列 的前n项的和为 ).
40.等差数列的通项公式

其前n项和公式为

.
41.等比数列的通项公式

其前n项的和公式为

或 .
42.等比差数列 : 的通项公式为

其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款 元(贷款 元, 次还清,每期利率为 ).
44.常见三角不等式
(1)若 ,则 .
(2) 若 ,则 .
(3) .
45.同角三角函数的基本关系式
, = , .
46.正弦、余弦的诱导公式

47.和角与差角公式
;
;
.
(平方正弦公式);
.
= (辅助角 所在象限由点 的象限决定, ).
48.二倍角公式
.
.
.
49. 三倍角公式
.
. .
50.三角函数的周期公式
函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0,ω>0)的周期 ;函数 , (A,ω, 为常数,且A≠0,ω>0)的周期 .
51.正弦定理
.
52.余弦定理
;
;
.
53.面积定理
(1) ( 分别表示a、b、c边上的高).

⑻ 有理数的运算法则有哪些

有理数的运算法则,主要是指有理数的四则运算法则以及非负整数指数的乘方的运算。

六、有理数的乘方:

1、正数的乘方是正数;

2、负数的偶数次方是正数,负数的奇数次方是负数;

3、0的任何非零次方等于0;

4、1的任何次方等于1;

5、任何非零的有理数的0次方等于1.

六、有理数的混合运算:

1、有括号先算括号;

2、有乘方再算乘方;

3、然后接四则运算法则运算.

题目千变万化,以上的法则是最基本的依据,灵活运用,还要靠平时多积累经验。

⑼ 有理指数幂的运算性质,底数的范围为什么是大于0为什么不能为负数

原因:1.a如果为0的话,0的指数不能为负数,这样的话r,s属于Q就不能用了。
2.底数是负数时,如果r+s=0,则明显是个反例。

⑽ 指数幂的运算性质

  1. 同底数幂相乘,底数不变,指数相加。 即a^mxa^n=a^(m+n) (m,n都是有理数)。

  2. 同底数幂相除,底数不变,指数相减。 即a^m÷a^n=a^(m-n) (a≠0,m,n都是有理数)。

3.幂的乘方,底数不变,指数相乘。 即 (a^m)^n=a^(mn)(m,n都是有理数)。

4.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。 即 (axb)^m=(a^m)x(b^m) (m,n都是有理数)。

5.分式乘方,分子分母各自乘方。即(a/b)^m=(a^m)/(b^m)(b≠0,m,n都是有理数)。

阅读全文

与有理指数幂的运算法则相关的资料

热点内容
平面编程和切削 浏览:704
phpemoji表情符号 浏览:778
IBM云平台shor算法 浏览:576
程序员当乙方 浏览:519
php商城设计与实现的 浏览:305
php自动打印 浏览:469
哪个app多年轻人 浏览:902
租的服务器如何重装 浏览:937
干眼症程序员 浏览:239
乐动达人安卓版有什么游戏 浏览:484
c523压缩比 浏览:543
命令语气的人什么心态 浏览:435
程序员喜欢留指甲吗 浏览:516
七牛云服务器收费标准 浏览:627
时光相册加密空间密码忘记 浏览:474
华为云为用户提供的服务云服务器 浏览:634
minecraftlinux服务器搭建 浏览:376
linux命令新建文件 浏览:709
长线pdf 浏览:607
程序员电脑支持手写 浏览:415