导航:首页 > 源码编译 > 匹配分类算法

匹配分类算法

发布时间:2022-05-03 07:30:36

A. 算法有哪些分类

算法分类编辑算法可大致分为:

基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。

B. 图像匹配的算法

迄今为止,人们已经提出了各种各样的图像匹配算法,但从总体上讲,这些匹配算法可以分成关系结构匹配方法、结合特定理论工具的匹配方法、基于灰度信息的匹配方法、基于亚像元匹配方法、基于内容特征的匹配方法五大类型 基于内容特征的匹配首先提取反映图像重要信息的特征,而后以这些特征为模型进行匹配。局部特征有点、边缘、线条和小的区域,全局特征包括多边形和称为结构的复杂的图像内容描述。特征提取的结果是一个含有特征的表和对图像的描述,每一个特征由一组属性表示,对属性的进一步描述包括边缘的定向和弧度,边与线的长度和曲率,区域的大小等。除了局部特征的属性外,还用这些局部特征之间的关系描述全局特征,这些关系可以是几何关系,例如两个相邻的三角形之间的边,或两个边之间的距离可以是辐射度量关系,例如灰度值差别,或两个相邻区域之间的灰度值方差或拓扑关系,例如一个特征受限于另一个特征。人们一般提到的基于特征的匹配绝大多数都是指基于点、线和边缘的局部特征匹配,而具有全局特征的匹配实质上是我们上面提到的关系结构匹配方法。特征是图像内容最抽象的描述,与基于灰度的匹配方法比,特相对于几何图像和辐射影响来说更不易变化,但特征提取方法的计算代价通常较,并且需要一些自由参数和事先按照经验选取的闭值,因而不便于实时应用同时,在纹理较少的图像区域提取的特征的密度通常比较稀少,使局部特征的提 取比较困难。另外,基于特征的匹配方法的相似性度量也比较复杂,往往要以特征属性、启发式方法及闭方法的结合来确定度量方法。基于图像特征的匹配方法可以克服利用图像灰度信息进行匹配的缺点,由于图像的特征点比象素点要少很多,因而可以大大减少匹配过程的计算量同时,特征点的匹配度量值对位置的变化比较敏感,可以大大提高匹配的精确程度而且,特征点的提取过程可以减少噪声的影响,对灰度变化,图像形变以及遮挡等都有较好的适应能力。所以基于图像特征的匹配在实际中的应用越来越广-泛。所使用的特征基元有点特征明显点、角点、边缘点等、边缘线段等。

C. 计算机视觉中,目前有哪些成熟的匹配定位算法

opencv的模板匹配,sift,surf等特征点匹配,还有GHT(广义霍夫)匹配.

D. 数据结构串匹配十大经典算法

1。
int Index(SString S,SString T,int pos)
{
//返回子串T在主串S中第pos个字符之后的位置。若不存在,则函数值为0。
//其中,T非空,1〈=pos<=Stringlength(S).
i=pos;j=1;
while(i<=S[0] && j<=T[0])
{
if (S[i]== T[i]) {++i;++j;}
else { i=i-j+2;j=1;}
}
if(j>T[0]) return i-T[0];
else return 0;
}//Index
2。

int Index-KMP(SString S,SString T,int pos)
{
//利用模式串T的next函数值求T在主串S中第pos 个字符之后的位置的KMP算法。其中,T非空,1<=pos<=Stringlength(S)
i=pos;
j=1;
while(i<=S[0] && j<=T[0])
{
if (j==0 || S[i]==T[j]) {++i; ++j;}
else j=next[j];
}
if (j>T[0]) return i-T[0];
else return 0;
//Index}
下面是next函数:
void next(SString S,ing next[])
{
i=1;
next[1]=0;
j=0;
while (i<T[0])
{
if (j==0 || T[i]==T[j]){ ++i; ++j;
next[j]=i;}
else j=next[j];
}
}//next

我现在只有这两个答案。

E. 双目视觉的匹配算法是不是有好几种具体是哪几种

与普通的图像模板匹配不同的是,立体匹配是通过在两幅或多幅存在视点差异、几何畸变、灰度畸变、噪声干扰的图像对之间进行的,不存在任何标准模板进行匹配。立体匹配方法一般包含以下三个问题:(1)基元的选择,即选择适当的图像特征如点、直线、相位等作为匹配基元;(2)匹配的准则,将关于物理世界的某些固有特征表示为匹配所必须遵循的若干规则,使匹配结果能真实反映景物的本来面目;(3)算法结构,通过利用适当的数学方法设计能正确匹配所选择基元的稳定算法。

根据匹配基元的不同,立体视觉匹配算法目前主要分为三大类,即区域匹配、相位匹配和特征匹配:

基于区域灰度的匹配算法是把一幅图像(基准图)中某一点的灰度邻域作为模板,在另一幅图像(待匹配图)中搜索具有相同(或相似)灰度值分布的对应点邻域,从而实现两幅图像的匹配。这类算法的性能取决于度量算法及搜索策略的选择。另外,也必须考虑匹配窗口大小、形式的选择,大窗口对于景物中存在的遮挡或图像不光滑的情况会更多的出现误匹配,小窗口则不具有足够的灰度变化信息,不同的窗口形式对匹配信息也会有不同的影响。因此应该合理选取匹配区域的大小和形式来达到较好的匹配结果。

相位匹配是近二十年发展起来的一种匹配算法,相位作为匹配基元,即认为图像对中的对应点局部相位是一致的。最常用的相位匹配算法有相位相关法和相位差——频率法,虽然该方法是一种性能稳定、具有较强的抗辐射抗透视畸变能力、简单高效、能得到稠密视差图的特征匹配方法。但是,当局部结构存在的假设不成立时,相位匹配算法因带通输出信号的幅度太低而失去有效性,也就是通常提到的相位奇点问题,在相位奇点附近,相位信息对位置和频率的变化极为敏感,因此用这些像素所确定的相位差异来衡量匹配误差将导致极不可靠的结果。此外,相位匹配算法的收敛范围与带通滤波器的波长有关,通常要考虑相位卷绕,在用相位差进行视差计算时,由于所采用的相位只是原信号某一带通条件下的相位,故视差估计只能限制在某一限定范围之内,随视差范围的增大,其精确性会有所下降。

基于特征的图像匹配方法是目前最常用的方法之一,由于它能够将对整个图像进行的各种分析转化为对图像特征(特征点、特征曲线等)的分析的优点,从而大大减小了图像处理过程的计算量,对灰度变化、图像变形、噪音污染以及景物遮挡等都有较好的适应能力。

基于特征的匹配方法是为使匹配过程满足一定的抗噪能力且减少歧义性问题而提出来的。与基于区域的匹配方法不同,基于特征的匹配方法是有选择地匹配能表示景物自身特性的特征,通过更多地强调空间景物的结构信息来解决匹配歧义性问题。这类方法将匹配的搜索范围限制在一系列稀疏的特征上。利用特征间的距离作为度量手段,具有最小距离的特征对就是最相近的特征对,也就是匹配对。特征间的距离度量有最大最小距离、欧氏距离等。

特征点匹配算法严格意义上可以分成特征提取、特征匹配和消除不良匹配点三步。特征匹配不直接依赖于灰度,具有较强的抗干扰性。该类方法首先从待匹配的图像中提取特征,用相似性度量和一些约束条件确定几何变换,最后将该变换作用于待匹配图像。匹配中常用的特征基元有角点、边缘、轮廓、直线、颜色、纹理等。同时,特征匹配算法也同样地存在着一些不足,主要表现为:

(l)特征在图像中的稀疏性决定了特征匹配只能得到稀疏的视差场,要获得密集的视差场必须通过使用插值的过程,插值过程通常较为复杂。

(2)特征的提取和定位的准确与否直接影响特征匹配结果的精确度。

(3)由于其应用场合的局限性,特征匹配往往适用于具有特征信息显着的环境中,在缺少显着主导特征环境中该方法有很大困难。

总之,特征匹配基元包含了算法编程上的灵活性以及令人满意的统计特性。算法的许多约束条件均能清楚地应用于数据结构,而数据结构的规则性使得特征匹配非常适用于硬件设计。例如,基于线段的特征匹配算法将场景模型描绘成相互联结的边缘线段,而不是区域匹配中的平面模型,因此能很好地处理一些几何畸变问题,对对比度和明显的光照变化等相对稳定。特征匹配由于不直接依赖于灰度,计算量小,比基于区域的匹配算法速度快的多。且由于边缘特征往往出现在视差不连续的区域,特征匹配较易处理立体视觉匹配中的视差不连续问题。

F. KMP模式匹配算法是什么

KMP模式匹配算法是一种改进算法,是由D.E.Knuth、J.H.Morris和v.R.Pratt提出来的,因此人们称它为“克努特-莫里斯-普拉特操作”,简称KMP算法。此算法可以在O(n+m)的时间数量级上完成串的模式匹配操作。其改进在于:每当一趟匹配过程出现字符不相等时,主串指针i不用回溯,而是利用已经得到的“部分匹配”结果,将模式串的指针j向右“滑动”尽可能远的一段距离后,继续进行比较。

1.KMP模式匹配算法分析回顾图4-5所示的匹配过程示例,在第三趟匹配中,当i=7、j=5字符比较不等时,又从i=4、j=1重新开始比较。然而,经仔细观察发现,i=4和j=1、i=5和j=1以及i=6和j=1这三次比较都是不必进行的。因为从第三趟部分匹配的结果就可得出,主串中的第4、5和6个字符必然是b、c和a(即模式串第2、第2和第4个字符)。因为模式中的第一个字符是a,因此它无须再和这三个字符进行比较,而仅需将模式向右滑动2个字符的位置进行i=7、j=2时的字符比较即可。同理,在第一趟匹配中出现字符不等时,仅需将模式串向右移动两个字符的位置继续进行i=2、j=1时的字符比较。由此,在整个匹配过程中,i指针没有回溯,如图1所示。

图1改进算法的模式匹配过程示意

G. 王者荣耀的匹配算法是怎么实现的

王者荣耀的匹配机制至少分为三种,分别是匹配赛匹配机制,赏金赛匹配机制,以及排位赛匹配机制。
先来说说匹配赛排位机制吧,这个匹配机制,其实参考的并不是小伙伴的段位胜率等因素,而是把小伙伴打的所有比赛以某种算法的形式算出一个“综合分”,这个综合分又被叫做隐藏分数,仅最大可能代表一个人的最真实实力。所以匹配的话,青铜遇到王者也不奇怪,毕竟有人王者实力就是不喜欢打排位。
赏金赛的匹配机制采用的是一种难度递进的机制:最通俗的说法就是像闯关一样,一关比一关难。对于真正的大神来说可能无所谓,但对于小白来说,前后实力差距之大真不是吹的。
最后是排位赛匹配机制:单排,双排,三排都是按照队伍平均段位水平去匹配,五排是按照五个人中最高的段位去匹配。一般情况下,黄金双排不会遇到铂金玩家,除非是另外的人里有铂金,而假设对面有三铂金,说明你这边至少有对应的段位。
最后,赛季初是一段很混乱的时期,既有大神掉下来的,又要浑水摸鱼上来的,除非你有真大神的实力,否则不建议打排位。总体来说,只要技术过硬,上王者基本都是时间早晚的问题。

H. 基于特征的影像匹配算法有哪些

基于局部约束的方法:有区域匹配(主要是基于窗口)、特征匹配(基于特征点,如SIFT)、相位匹配(主要用滤波来做)。
基于全局约束的方法:主要有动态规划算法、图割算法、人工智能算法、协同算法、置信度传播算法、非线性扩散算法等。
那个发展史就找两本摄影测量的书或下几篇论文看看就知道了

I. 图像匹配的匹配分类

灰度匹配的基本思想:以统计的观点将图像看成是二维信号,采用统计相关的方法寻找信号间的相关匹配。利用两个信号的相关函数,评价它们的相似性以确定同名点。
灰度匹配通过利用某种相似性度量,如相关函数、协方差函数、差平方和、差绝对值和等测度极值,判定两幅图像中的对应关系。
最经典的灰度匹配法是归一化的灰度匹配 法,其基本原理是逐像素的把一个以一定大小的实时图像窗口的灰度矩阵,与参考图像的所有可能的窗口灰度阵列,按某种相似性度量方法进行搜索比较的匹配方法,从理论上说就是采用图像相关技术。
利用灰度信息匹配方法的主要缺陷是计算量太大,因为使用场合一般都有一定的速度要求,所以这些方法很少被使用。现在已经提出了一些相关的快速算法,如幅度排序相关算法,FFT相关算法和分层搜索的序列判断算法等。 特征匹配是指通过分别提取两个或多个图像的特征(点、线、面等特征),对特征进行参数描述,然后运用所描述的参数来进行匹配的一种算法。
基于特征的匹配所处理的图像一般包含的特征有颜色特征、纹理特征、形状特征、空间位置特征等。
特征匹配首先对图像进行预处理来提取其高层次的特征,然后建立两幅图像之间特征的匹配对应关系,通常使用的特征基元有点特征、边缘特征和区域特征。 特征匹配需要用到许多诸如矩阵的运算、梯度的求解、还有傅立叶变换和泰勒展开等数学运算。
常用的特征提取与匹配方法有:统计方法、几何法、模型法、信号处理法、边界特征法、傅氏形状描述法、几何参数法、形状不变矩法等。
基于图像特征的匹配方法可以克服利用图象灰度信息进行匹配的缺点,由于图像的特征点比较像素点要少很多,大大减少了匹配过程的计算量;同时,特征点的匹配度量值对位置的变化比较敏感,可以大大提高匹配的精确程度;而且,特征点的提取过程可以减少噪声的影响,对灰度变化,图像形变以及遮挡等都有较好的适应能力。所以基于图像特征的匹配在实际中的应用越来越广泛。所使用的特征基元有点特征(明显点,角点,边缘点等),边缘线段等。 特征匹配与灰度匹配的区别:灰度匹配是基于像素的,特征匹配则是基于区域的,特征匹配在考虑像素灰度的同时还应考虑诸如空间整体特征、空间关系等因素。
特征是图像内容最抽象的描述,与基于灰度的匹配方法相比,特征相对于几何图像和辐射度影响来说更不易变化,但特征提取方法的计算代价通常较大,并且需要一些自由参数和事先按照经验选取的阀值,因而不便于实时应用。同时,在纹理较少的图像区域提取的特征的密度通常比较稀少,使局部特征的提取比较困难。另外,基于特征的匹配方法的相似性度量也比较复杂,往往要以特征属性、启发式方法及阀方法的结合来确定度量方法。

J. 匹配算法依据是什么

其主要原理都是切分出单字串,然后和词库进行比对,如果是一个词就记录下来, 否则通过增加或者减少一个单字,继续比较,一直还剩下一个单字则终止,如果该单字串无法切分,则作为未登录处理。

阅读全文

与匹配分类算法相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:577
python员工信息登记表 浏览:375
高中美术pdf 浏览:158
java实现排列 浏览:511
javavector的用法 浏览:979
osi实现加密的三层 浏览:230
大众宝来原厂中控如何安装app 浏览:911
linux内核根文件系统 浏览:240
3d的命令面板不见了 浏览:524
武汉理工大学服务器ip地址 浏览:146
亚马逊云服务器登录 浏览:522
安卓手机如何进行文件处理 浏览:70
mysql执行系统命令 浏览:928
php支持curlhttps 浏览:142
新预算法责任 浏览:443
服务器如何处理5万人同时在线 浏览:249
哈夫曼编码数据压缩 浏览:424
锁定服务器是什么意思 浏览:383
场景检测算法 浏览:616
解压手机软件触屏 浏览:348