㈠ 什么是算法
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。即使在当前,依然常有直觉想法难以定义为形式化算法的情况。
㈡ 如何消除算法中的性别歧视
我们这个世界是有很多的物种组成的,在这其中也包括我们人类。而人类则是分为男人和女人,但是相比较来看男人的力量比女生要强大,可承受的抗击能力也比女人强上很多。所以,在这个世界上是存在着性别的歧视的。因为女人普遍要弱于男人,所以社会上会认为男人生来就是比女人强。在算法中也存在着一定的性别歧视。
消除性别歧视应该有科学的方法和实际上的行动。应该制定一个完整而又有规律的实施方案。应该多在生活中思考一下各有的优点以及对方的缺点。要把缺点和优点综合起来,客观的评价一个人。不能把那种带有歧视的观念带到生活当中去。性别歧视本身就是不对的,是一种错误的思想,应该摒弃的。要在心中时刻都保持着这样的一种想法。在算法当中应当客观的去评价一个人,而不是单从性别上去评判。
㈢ “大数据杀熟”等乱象凸显,你对这样的算法感到害怕吗
这样的算法确实让人挺害怕的,之所以会感到害怕原因很多,并不是一种原因就会让人害怕,而是他们的这种大数据杀熟,在我们不知不觉中,给我们推送了很多类似的信息,也给我们推送很多不平等的东西。比如说最简单的订酒店吧,一个新用户订酒店他会有优惠券,他会有返利,但是一个老用户,那么他订的酒店往往会比一个新用户要贵的多,这就是一个大数据杀熟,他会根据一个客户的使用习惯,判断它的偏好以及对价格是否敏感,然后推荐出不同的搜索结果。这样的结果就会导致先用我搜索出来的酒店价格比老用户搜索出来的要便宜几十块甚至上百元,有时候某些知名酒店可能价格相差上千元左右。
网购往往是遭遇大数据杀熟的重灾区,因为一些平台利用一些算法技术,自然会给很多不同类型的消费者做出不同的推送,有时候老用户看到的物品的价格要比新用户贵得多,新用户搜索的商品往往较便宜。前段时间我想给我的孩子买一些儿童故事书,我搜索出来的商品比我另一半搜索出来的商品要贵30%,可能是我花钱的时候并不是特别在意价格,而我的另一半很在乎对比性价比就出现这样的情况,这也是大数据杀熟,不得不让人害怕。
㈣ 算法为什么重要
第一,算法实际上不能孤立理解。算法必须和数据、产品一起来理解。算法的出现,实际上背后隐藏着人们阅读行为的“数据化”。我们知道,阅读是一种私密的行为,阅读的行为是人们建立精神世界的支柱。那么问题来了,我们使用产品,我们必须上传数据。当每个人的阅读都变为数据,实际上意味着每个人的爱好都能够被迅速的存储(你也可以被理解为监视)。而算法则使得机器能够最有效率的对人们的爱好和行为进行判断和分析。从用户上看,这即是方便,也是隐私的暴露。而对于商业来看,当数据和算法达到一定水平之后,判断人们的爱好和规律,进而制作广告,推出吸引人的媒介产品就成了轻而易举的事情。可以说未来的数据就是最核心,最重要的资源。
第二,算法意味着预测,意味着在人们的意识之外,发现他还没有找到的需求。这是很有意思的。它超出了人们的想象,机器比我们更加了解我们自己。从媒介产品角度来说,这非常有意思,传播的生产模式可能改变了,反馈滞后的问题也会解决。而从更长远的角度看,了解阅读数据只是第一步,下一步可能是更加深层次的爱好,甚至是更底层的行为和思考。但从这个方面来,算法不是人工智能,但他意味着人工智能。它是一个关键的入口,从这个地方开始,人们可以借助机器的力量对自己的行为进行矫正,人的感性思维能力和数据得出的科学结论开始融合了,这是人走向人机合一的第一步。但反过来,我们也需要警惕,算法的这种功能是不是掌握在社会的良性力量手里?如果资本或者其他利益集团掌握了算法和数据资源,是否会对社会控制又多一层牢不可破的枷锁,一个反乌托邦的社会可能会到来。
第三,不要忘记了算法的迭代。算法的妙处在于它是自我成长的。人的迭代是有限的,因为人的思维模式是固定的,学习能力在成年后随着时间递减。但是算法,就像Alphago的棋术,几年内就涨了几个量级。这是因为随着人们使用,给予越来越多的反馈,算法会越来越精确,发展到人们难以想象的地步,因为算法是机器学习得出的,人们也越来越不知道算法背后究竟是什么东西。可以说,这是其他任何模式都无法做到的。他不知道这背后到底是什么。
所以总的来说一句话,算法是很有意思也很有价值的一个热点。我们要答这个热点,可以用到的理论既要包括新媒体、人工智能的相关理论包括一些我们已经说到的如信息茧房、知识沟之类的问题,也要从反面用到传播政治经济学(考虑算法和数据资源的所有权)、全景监视(算法意味着对人们彻底的监视)。这样我们答题会比较有深度,也比较完整。
㈤ 公平的计算方式(感谢)
第一种的计算方式是正确的,三层楼的总价值需45万,每户需要出资15万元,由于楼层好的原因,2层楼需要投入1万元,也就是说1层3层每户各要少投入5千元,这就清楚了,
1层楼户,145000元
2层楼户,160000元
3层楼户,145000元
㈥ “算法时代”到来,为何算法服务人类并未被实现
因为算法服务没有任何感情的,所以处理不了特别复杂的情况。
㈦ 数学算法能根本解决“摇号公平”问题吗
数学算法本身可以达到随机的目的的,不过算法是可以人为操纵的,所以更容易造成摇号的不公平。
㈧ 高中生能学算法与数据结构吗
可以,没什么特别要求
高等数学在在数据结构似乎不用.
大学的离散数学实际上就是小学生都不屑一看的东西换个让人费解的说法好让人觉得大学生才懂.当然,难度没有,体系性更强.数据结构与之有一点点关系,但你完全可你把它当成小学就知道的东西处理.
根据你的说法,你的专业技能现在绝对比大部分计算机本科生强.
当然,如果能学习更广泛的知识肯定会更好.
㈨ 大数据保险会影响社会公平吗
在当下互联网和大数据技术推动下,保险行业的新应用及新的商业模式未来想象空间将会无限,大数据对保险行业的影响可能远比想象的要更加深远。
最近在公司内部一次大数据工作会议上,讨论如何利用大数据计算客户风险成本,为客户提供不同保费报价。一位多年从事保险行业工作的同事提出了不同意见,认为该做法拉大了自身风险较大人群与风险较小人群间的保险价格差距,使部分人群因价格难以承受,可能会造成其无法获得所需保险服务,有违保险所倡导的互帮互助宗旨精神。
这让大家认识到,大数据对保险行业的影响可能远比想象的要更加深远。
传统保险商业模式并不完美
保险起源于人们互帮互助、分摊风险的思想,是最古老的风险管理方法之一。它以损失分摊的方法,用多数单位和个人缴纳保费建立保险基金,使少数成员的损失由全体被保险人分担。其目的就是共同抵御风险,帮助那些陷入困难的成员渡过难关。保险从萌芽时期的互助形式逐渐发展成为现代商业保险形式。保险服务对象从一开始的熟人之间,逐步扩展到陌生人之间。
市场中保险公司之间展开着激烈的竞争,大家最重要的竞争手段就是把不同人群的风险概率尽可能做精确细分。分得越细,同一个细分组里人群的风险就越接近,其被别人占便宜的可能性就越低,所交的保费也就越少,就更能够吸引到优质客户来这样的公司买保险。
客户风险细分的程度,取决于保险公司收集和处理客户信息的能力。保险公司会想方设法获取和验证客户的信息,经过一系列的风险评估计算,把来投保的客户对应分配到不同风险细分组中。选择并提供优惠保费价格给那些风险低的客户,对风险高的客户则提高保费价格或干脆拒之门外。
客户也会受到利益驱动,千方百计的隐藏自己的真实风险情况,争取瞒过保险公司,让自己获得保险公司低风险评价,以便降低自己所交保费。一些人投保之后,因为有了保险所提供的保障,就会忽视风险,行为变得无所顾忌,比如烟会抽得更凶,驾驶会更加狂野。
类似的道德风险使那些不负责任的人占用了较多大家共用的风险基金资源,影响到其他规矩人的利益。规矩人就会逐渐退出保险,结果是逆向选择。投保人中规矩的越来越少,不规矩的越来越多,只好保费越提越高,持续恶性循环,直到影响到保险公司的生存。
在信息不充足的状况下,保险公司很难进行有效的风险分析,只能采用大类分组贴标签的方式开展业务,选择那些比较容易通过标签判断其风险并且整体风险较低的人群。而对于那些无法有效判断风险或风险较高的客户群体,保险公司会尽量避开。这使得存在相当一部分数量的人群无法获得所需要的保险服务。比如一些经常出现欺诈风险的区域人群,就会被保险公司采取各种借口排斥。
最终这些无法获得合理保险服务的人群,当遇到风险困难无力自己解决时,都将由社会保障做兜底。这既没有发挥该部分人群自身经济能力的作用,相应的保障服务效率也不高。虽然监管当局采取了一系列措施,阻止保险公司类似的做法,但保险公司为了控制风险,会千方百计进行博弈,该现象仍然普遍存在。
大数据带来改变
大数据时代通过无所不在的传感器、移动互联、人工智能技术,使获得和分析每个人的健康、行为、信用等风险数据变得非常方便,成本越来越低,个人的信息能见度越来越高,保险公司风险建模预测的准确度不断提升。基于此,保险公司拥有了应对道德风险和逆向选择的利器,将让你无所循形。想占保险公司便宜以及搭规矩人顺风车会越来越难。
大数据和人工智能将会像手术刀一样精准地把每个人从风险池里剖出来,保险将进入一人一价时代。每个人根据自己风险概率的不同支付相应价格的保费,风险仍然得到了分摊,但分摊到每个人的比率发生了改变。风险高的人需要多分摊,风险低的人将少分摊。
具备大数据风险分析能力的保险公司可以利用该武器对客户精挑细选,找出那些风险概率低的好客户,给予与其风险相匹配的优惠价格,对于那些风险较高的客户则会要求其支付更高的价格,至于那些风险特别高的客户,要价可能超过其承受能力,就会被拒之门外。越是风险低的好客户越会为了获得优惠价格而选择这样的公司。
不具备大数据风险分析能力的保险公司则只能接受那些被挑剩下的客户,自身所承担的风险则会越来越大,以至于难以为继。
谁先掌握该武器,谁就可以获得先发优势。精准的差别定价意味着卖家可以最大限度地把消费者剩余拿走。领先的保险公司可以结合市场竞争情况,给出能够对客户有吸引力,同时还带给自己最大利益的保费价格。市场竞争环境下,其他保险公司为了赢得竞争,就必须具有同样的风险细分能力,迫使领先者为争夺客户不断给出接近客户风险成本的保费价格,直至溢价趋向于零。最终竞争趋于平衡,市场价格得到稳定,客户因其自身风险状况而得到相应最优惠保费价格。
被保险人符合保险公司风险要求的行为将使得其所需支付的保费降低,反之则要支付与之相匹配的高额保费。被保险人为了自身利益就会尽可能迎合保险公司的要求,做符合保险公司要求的行为,安全驾驶、不抽烟酗酒、控制饮食、健身锻炼等等。这样不但能够节省投保人保费支出,还能大幅提升被保险人自身安全健康状况。
对于被保险人的行为数据收集分析,并不仅仅限于保险申请前的一段时间,更可以扩展至承保期间。你的所有行为可能会影响下次保险周期的保费价格。保险公司可以设计另一种形式的保险合约,例如先收取一定数额的保费和押金,当发现存在违反合同规定的不安全行为时,直接扣除部分押金,甚至中断保险合约。若被保险人一切行为符合要求,则退回押金或抵扣至后续保险期限中。
保险公司还可以在保险期内为被保险人提供安全健康管理服务,让被保险人及时获悉自己所处于的安全和健康状况,据此调整自己的行为。利用行为数据可以有效控制逆向选择,让每个人对自己的行为负责,无法占别人的便宜,有利于伸张社会公平正义。可以说大数据技术为保险行业注入了满满的正能量。
相比较传统风险判定采用大类人群贴标签的方法,每个人精准定价会让更多客户享受到更加合理的价格。计算每个人的风险概率首先要依据大数据建模,而建模基于过去人群的行为状况及已经出现的风险事件,只能体现相关性,不能基于因果进行判断。建模分析预测也会因为基于数据统计而存在一些计算上的偏差。
有一些风险状况比较好的人,因为其部分行为与风险较高者相类似,这些行为由都在模型计算所收集的范围内,就会被错误地判定为风险较高,需要支付超出其真实风险状况的保费。其就会因为别人的错误而遭受惩罚,这在一定程度上说很不公平。
随着算法的优化、数据的更加丰富和计算能力的提升,这样的误伤范围会进一步缩小,但遗憾的是,由于数据建模方法的局限性,缩小的进程也不会很快,更难彻底杜绝。
政府监管应做出相应政策安排
有些风险发生概率与个人努力的行为程度无关,例如每个人拥有基因不同就会带来自身发生疾病概率的不同。若根据与生俱来的基因数据进行风险定价,则很可能让每个人从出生就决定了其未来的保费有很大差异。基因健康的人买低价保单,基因没那么健康的人只好买高价保单。我们可以控制自己的行为,但完全无法控制自己的基因。
这时候,保险风险共担的初衷被摧毁了,社会互助机制遭到破坏。这样的做法有可能造成社会分裂,带来社会的不安定因素。个人能控制的风险应当由其自己承担,而对于自己无法控制的风险,应由公众一起分担。
以无知之幕的思考方式,我们想象通过扮演具有各种不同基因状况的群体成员,去感受相关对策下社会生活状况。显然我们都不愿意接受自己活在一个因为基因有缺陷就活该倒霉的社会里。那些因为基因缺陷而无法面对风险困境的人群及其亲属将会为了生存而采取行动,甚至可能会带来社会动荡。
政府监管者禁止保险公司利用基因数据进行风险定价,其目的就是最大限度的保证社会稳定。让每个人自身无法改变的风险因素不影响其在社会中所能够享受到的正当权利,尽可能营造公平平等的社会环境。
但只要获取基因分析结果能够获得好处,保险公司就会想方设法规避监管,而政府则会因此加大监管力度。相互的博弈将会带来大量社会成本消耗,因此需要做出更加符合人性规律的政策安排。
既然保险公司有开展基因数据分析的冲动,可以考虑允许每家保险公司利用基因数据计算每个人的风险,为客户申请因基因不同而带来较大风险的补贴。监管者也根据相关数据进行计算,然后确认其中所申请补贴较为合理的保险公司计算结果,承诺用财政资金对客户提供风险补贴。
该做法并不回避基因所带来的每个人风险差异,而是通过财政转移支付,让社会大众对相关特殊群体提供必要的关怀,使其能够最终与别人站在同样的起跑线上,只为自己的行为负责,而不用为自己无法改变的基因负责。
保险公司能够获得风险概率所涉及的款项,就不会感觉到吃亏,更愿意接受这样的客户。通过对基因有缺陷客户进行补贴后,后续所有服务可以一视同仁,没有任何区别。这让保险公司与监管者都愿意更准确的开展数据分析,避免相互间博弈的损耗,社会资源倾斜也更加精准有效。
竞争将让各个保险公司努力掌握相关的技术方法,而技术本身并不存在壁垒,很难据此形成独特的竞争优势。一些公司将眼光瞄向了一项关键资源,那就是客户数据。它们试图垄断客户数据,进而垄断对客户的风险评估,从而影响竞争,延缓客户获取更加优惠价格的进程。
政府监管一定要有所作为,积极保护客户的利益,维护市场公平竞争的局面,确保客户有更多选择。要让客户拥有数据的使用决定权,数据可以存放在数据产生的地方,但数据的使用权必须掌握在客户手中,客户可以授权给任何其所指定的服务商使用,以便让这些数据带给客户自身最大的利益。提供存放数据和计算服务的相关公司可以通过收费获利,但不能影响客户对数据的授权使用。
大数据技术在保险行业应用的快速发展态势已经形成。未来一段时间,领先者将会在一些领域取得积极进展,从而给行业带来巨大冲击。改变已经到来,保险公司必须在大数据应用方面加大投入,努力跟上时代的步伐,以便在竞争中处于有利地位;政府监管者需要未雨绸缪、因势利导,提前做好政策研究和相关布局,营造良好的行业市场竞争环境,确保社会生活持续稳定。
以上由物联传媒转载,如有侵权联系删除
㈩ 如何评价算法
评价算法的四个标准:
1.正确性
能正确地实现预定的功能,满足具体问题的需要。处理数据使用的算法是否得当,能不能得到预想的结果。
2.易读性
易于阅读、理解和交流,便于调试、修改和扩充。写出的算法,能不能让别人看明白,能不能让别人明白算法的逻辑?如果通俗易懂,在系统调试和修改或者功能扩充的时候,使系统维护更为便捷。
3.健壮性
输入非法数据,算法也能适当地做出反应后进行处理,不会产生预料不到的运行结果。数据的形式多种多样,算法可能面临着接受各种各样的数据,当算法接收到不适合算法处理的数据,算法本身该如何处理呢?如果算法能够处理异常数据,处理能力越强,健壮性越好。
4.时空性
算法的时空性是该算法的时间性能和空间性能。主要是说算法在执行过程中的时间长短和空间占用多少问题。
算法处理数据过程中,不同的算法耗费的时间和内存空间是不同的。
(10)算法是否会让人更平等扩展阅读:
算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令表示一个或多个操作。此外,一个算法还具有下列5个重要的特性。
(1)、有穷性
一个算法必须总是(对任何合法的输入值)在执行有穷步之后结束,且每一步都可在有穷时间内完成。
(2)、确定性
算法中每一条指令必须有明确的含义,读者理解时不会产生二义性。即对于相同的输入只能得到相同的输出。
(3)、可行性
一个算法是可行的,即算法中描述的操作都是可以通过已经实现的基本运算执行有限次来实现的。
(4)、输入
一个算法有零个或多个的输入,这些输入取自于某个特定的对象的集合。
(5)、输出
一个算法有一个或多个的输出,这些输出是同输入有着某种特定关系的量。