‘壹’ 4、 说明什么是算法,算法的描述方法,各种方法的特点是什么.
第一问、答:为解决某一问题而设计的确定的有限的步骤就称为算法
第二问、答:自然语言、流程图、伪代码或程序设计语言
第三问、答:
自然语言
用自然语言表示算法,人比较容易理解,但书写较烦琐,具有不确切性,容易引起歧义,造成误解;
对较复杂的问题,用自然语言难以表达准确;
计算机不能识别和执行.
流程图
用图形符号表示算法必须要有一组统一规定、含义确定的专用符号;
用流程图表示算法就较直观、形象;
计算机不能识别和执行.
伪代码或程序设计语言
只有用计算机能理解和执行的程序设计语言把算法表示出来,输入计算机执行,计算机才能按照预定的算法去解决问题;
不同类型的计算机能够识别的指令和语言不尽相同,即使对同一种计算机语言,不同类型的计算机对该语言的翻译程序也有差异.
‘贰’ 算法的基本特征是
算法
3分钟了解今日头条算法原理(科普版)
02:43
什么是算法
04:28
概述
历史发展
算法分类
算法特征
算法要素
算法评定
目录
1摘要
2基本信息
3概述
4历史发展
5算法分类
6算法特征
7算法要素
数据的运算和操作
算法的控制结构
8算法评定
9描述方式
10史料记载
11基本方法
12参考资料
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制;它是求解问题类的、机械的、统一的方法,常用于计算、数据处理(英语:Data processing)和自动推理。可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
基本信息
中文名
算法
外文名
Algorithm
拼音
suanfa
出处
数学 计算机
定义
是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制
展开全部
概述
求解问题类的、机械的、统一的方法,它由有限多个步骤组成,对于问题类中的每个给定的具体问题,机械地执行这些步骤就可以得到问题的解答。算法的这种特性,使得计算不仅可以由人,而且可以由计算机来完成。用计算机解决问题的过程可以分成三个阶段:分析问题、设计算法和实现算法。[1]
历史发展
中国古代的筹算口决与珠算口决及其执行规则就是算法的雏形,这里,所解决的问题类是算术运算。古希腊数学家欧几里得在公元前3世纪就提出了一个算法,来寻求两个正整数的最大公约数,这就是有名的欧几里得算法,亦称辗转相除法。中国早已有“算术“、“算法”等词汇,但是它们的含义是指当时的全部数学知识和计算技能,与现代算法的含义不尽相同。英文algorithm(算法)一词也经历了一个演变过程,最初的拼法为algorism或algoritmi,原意为用阿拉伯数字进行计算的过程。这个词源于公元 9世纪波斯数字家阿尔·花拉子米的名字的最后一部分。[1]
在古代,计算通常是指数值计算。现代计算已经远远地突破了数值计算的范围,包括大量的非数值计算,例如检索、表格处理、判断、决策、形式逻辑演绎等。
在20世纪以前,人们普遍地认为,所有的问题类都是有算法的。20世纪初,数字家们发现有的问题类是不存在算法的,遂开始进行能行性研究。在这一研究中,现代算法的概念逐步明确起来。30年代,数字家们提出了递归函数、图灵机等计算模型,并提出了丘奇-图灵论题(见可计算性理论),这才有可能把算法概念形式化。按照丘奇-图灵论题,任意一个算法都可以用一个图灵机来实现,反之,任意一个图灵机都表示一个算法。
按照上述理解,算法是由有限多个步骤组成的,它有下述两个基本特征:每个步骤都明确地规定要执行何种操作;每个步骤都可以被人或机器在有限的时间内完成。人们对于算法还有另一种不同的理解,它要求算法除了上述两个基本特征外,还要具有第三个基本特征:虽然有些步骤可能被反复执行多次,但是在执行有限多次之后,就一定能够得到问题的解答。也就是说,一个处处停机(即对任意输入都停机)的图灵机才表示一个算法,而每个算法都可以被一个处处停机的图灵机来实现[1]
算法分类
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。[1]
算法可以宏泛的分为三类:
有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。
有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。
无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。[1]
算法特征
1、输入项:一个算法有零个或多个输入,以刻画运算对象的初始情况。例如,在欧几里得算法中,有两个输入,即m和n。[1]
2、确定性:算法的每一个步骤必须要确切地定义。即算法中所有有待执行的动作必须严格而不含混地进行规定,不能有歧义性。例如,欧几里得算法中,步骤1中明确规定“以m除以n,而不能有类似以m除n以或n除以m这类有两种可能做法的规定。
3、有穷性:一个算法在执行有穷步滞后必须结束。也就是说,一个算法,它所包含的计算步骤是有限的。例如,在欧几里得算法中,m和n均为正整数,在步骤1之后,r必小于n,若r不等于0,下一次进行步骤1时,n的值已经减小,而正整数的递降序列最后必然要终止。因此,无论给定m和n的原始值有多大,步骤1的执行都是有穷次。
4、输出:算法有一个或多个的输出,即与输入有某个特定关系的量,简单地说就是算法的最终结果。例如,在欧几里得算法中只有一个输出,即步骤2中的n。
5、能行性:算法中有待执行的运算和操作必须是相当基本的,换言之,他们都是能够精确地进行的,算法执行者甚至不需要掌握算法的含义即可根据该算法的每一步骤要求进行操作,并最终得出正确的结果。[1]
‘叁’ 数学算法的含义
1000 ÷ 350,就是2012年9月份卖的产品的单价
x 300,就是2011年9月份,如果产品按照2012年的单价,能卖出多少钱
900 - ,就是如果按照2011年的单价,比按照2012年的单价,多卖了多少钱
也就是30元
900 - 1000 就是2011年比2012年少买了多少钱,再减去30,就是理应比2012多买的30
得到的-130,其实就是如果按照2012的单价,2011比2012年少卖了多少钱
希望能帮到你,看不懂可以追问
‘肆’ 算法是数学和计算领域的概念,指完成特定计算的一组什么操作
咨询记录 · 回答于2021-12-06
‘伍’ 数学算法是什么
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。即使在当前,依然常有直觉想法难以定义为形式化算法的情况。一个算法应该具有以下五个重要的特征:
有穷性(Finiteness)
算法的有穷性是指算法必须能在执行有限个步骤之后终止;
确切性(Definiteness)
算法的每一步骤必须有确切的定义;
输入项(Input)
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
输出项(Output)
一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
可行性(Effectiveness)
算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性)。
‘陆’ 算法及其特性有哪些
1.算法的重要特性(1)有穷性:一个算法必须在执行有穷步骤之后正常结束,而不能形成无穷循环。
(2)确定性:算法中的每一条指令必须有确切的含义,不能产生多义性。
(2)可行性:算法中的每一条指令必须是切实可执行的,即原则上可以通过已经实现的基本运算执行有限次来实现。
(4)输入:一个算法应该有零个或多个输入。
(5)输出:一个算法应该有一个或多个输出,这些输出是同输入有特定关系的量。
2.算法描述的方法(1)框图描述:该方法使用流程图或N-S图来描述算法。
(2)自然语言描述:该方法采用自然语言,同时添加高级程序设计语言如while、for和if等基本控制语句来描述算法。这类描述方法自然、简洁,但缺乏严谨性和结构性。
(2)类语言描述:这是介于程序设计语言和自然语言之间算法描述形式,其特征是突出算法设计的主体部分而有意忽略某些过于严格的语法细节,如类C或C++的伪语言。这种算法不能直接在计算机上运行,但专业设计人员经常使用它来描述算法,它具有容易编写、阅读和格式统一的特点。
(4)程序设计语言描述:采用某种高级程序设计语言(如C或C++)来描述。这是可以在计算机上运行并获得结果的算法描述。
本课程将采用伪C语言进行算法描述。
2.算法与程序的关系算法的含义与程序十分相似,但二者是有区别的。算法和程序都是用来表达解决问题的逻辑步骤;算法是对解决问题方法的具体描述,程序是算法在计算机中的具体实现;一个程序不一定满足有穷性(死循环),而算法一定满足有穷性;程序中的指令必须是机器可执行的,而算法中的指令则无此限制;一个算法若用计算机语言来书写,则它就可以是一个程序。因此,程序是算法,但算法不一定是程序。4.算法设计要求在算法设计中,对同一个问题可以设计出不同的求解算法。如何评价这些算法的优劣,从而为算法设计和选择提供可靠的依据?通常可从以下四个方面评价算法的质量:
(1)正确性:算法应该能够正确地执行预先规定的功能,并达到所期望的性能要求。
(2)可读性:算法应该好读,以有利于读者对程序的理解,便于调试和修改。
(2)健壮性:算法应具有容错处理。当输入非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
(4)效率与低存储量需求:效率指的是算法执行的时间。对于同一个问题,如果有多种算法可以求解,执行时间短的算法效率高。算法存储量指的是算法执行过程中所需要的最大存储空间。高效率和低存储量这两者与问题的规模有关。
‘柒’ 算法的描述、特性以及概念
描述算法的方法有多种,常用的有自然语言、结构化流程图、伪代码和PAD图等,其中最普遍的是流程图。
分类:算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
特征:有穷性,算法的有穷性是指算法必须能在执行有限个步骤之后终止;确切性,算法的每一步骤必须有确切的定义;输入项:一个算法有0个或多个输入,;输出项;可行性,算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成。
(7)数学算法的含义和特点扩展阅读
算法历史:
“算法”即算法的大陆中文名称出自《周髀算经》;而英文名称Algorithm 来自于9世纪波斯数学家al-Khwarizmi,al-Khwarizmi在数学上提出了算法这个概念。“算法”,意思是阿拉伯数字的运算法则,在18世纪演变为"algorithm"。
因为巴贝奇未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。 20世纪的英国数学家图灵提出了着名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要作用。
‘捌’ 计算机的算法具有哪些特性
计算机的算法具有可行性,有穷性、输入输出、确定性。
计算机算法特点
1.有穷性。一个算法应包含有限的操作步骤,而不能是无限的。事实上“有穷性”往往指“在合理的范围之内”。如果让计算机执行一个历时1000年才结束的算法,这虽然是有穷的,但超过了合理的限度,人们不把他视为有效算法。
2. 确定性。算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的。算法中的每一个步骤应当不致被解释成不同的含义,而应是十分明确的。也就是说,算法的含义应当是唯一的,而不应当产生“歧义性”。
3. 有零个或多个输入、所谓输入是指在执行算法是需要从外界取得必要的信息。
4. 有一个或多个输出。算法的目的是为了求解,没有输出的算法是没有意义的。
5.有效性。 算法中的每一个 步骤都应当能有效的执行。并得到确定的结果。
重要算法
A*搜寻算法
俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。
Beam Search
束搜索(beam search)方法是解决优化问题的一种启发式方法,它是在分枝定界方法基础上发展起来的,它使用启发式方法估计k个最好的路径,仅从这k个路径出发向下搜索,即每一层只有满意的结点会被保留,其它的结点则被永久抛弃,从而比分枝定界法能大大节省运行时间。束搜索于20 世纪70年代中期首先被应用于人工智能领域,1976 年Lowerre在其称为HARPY的语音识别系统中第一次使用了束搜索方法。他的目标是并行地搜索几个潜在的最优决策路径以减少回溯,并快速地获得一个解。
二分取中查找算法
一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。这种搜索算法每一次比较都使搜索范围缩小一半。
Branch and bound
分支定界(branch and bound)算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
数据压缩
数据压缩是通过减少计算机中所存储数据或者通信传播中数据的冗余度,达到增大数据密度,最终使数据的存储空间减少的技术。数据压缩在文件存储和分布式系统领域有着十分广泛的应用。数据压缩也代表着尺寸媒介容量的增大和网络带宽的扩展。
Diffie–Hellman密钥协商
Diffie–Hellman key exchange,简称“D–H”,是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。
Dijkstra’s 算法
迪科斯彻算法(Dijkstra)是由荷兰计算机科学家艾兹格·迪科斯彻(Edsger Wybe Dijkstra)发明的。算法解决的是有向图中单个源点到其他顶点的最短路径问题。举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离,迪科斯彻算法可以用来找到两个城市之间的最短路径。
动态规划
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。比较着名的应用实例有:求解最短路径问题,背包问题,项目管理,网络流优化等。这里也有一篇文章说得比较详细。
欧几里得算法
在数学中,辗转相除法,又称欧几里得算法,是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。
最大期望(EM)算法
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
快速傅里叶变换(FFT)
快速傅里叶变换(Fast Fourier Transform,FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。
哈希函数
HashFunction是一种从任何一种数据中创建小的数字“指纹”的方法。该函数将数据打乱混合,重新创建一个叫做散列值的指纹。散列值通常用来代表一个短的随机字母和数字组成的字符串。好的散列函数在输入域中很少出现散列冲突。在散列表和数据处理中,不抑制冲突来区别数据,会使得数据库记录更难找到。
堆排序
Heapsort是指利用堆积树(堆)这种数据结构所设计的一种排序算法。堆积树是一个近似完全二叉树的结构,并同时满足堆积属性:即子结点的键值或索引总是小于(或者大于)它的父结点。
归并排序
Merge sort是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
RANSAC 算法
RANSAC 是”RANdom SAmpleConsensus”的缩写。该算法是用于从一组观测数据中估计数学模型参数的迭代方法,由Fischler and Bolles在1981提出,它是一种非确定性算法,因为它只能以一定的概率得到合理的结果,随着迭代次数的增加,这种概率是增加的。该算法的基本假设是观测数据集中存在”inliers”(那些对模型参数估计起到支持作用的点)和”outliers”(不符合模型的点),并且这组观测数据受到噪声影响。RANSAC 假设给定一组”inliers”数据就能够得到最优的符合这组点的模型。
RSA加密算法
这是一个公钥加密算法,也是世界上第一个适合用来做签名的算法。今天的RSA已经专利失效,其被广泛地用于电子商务加密,大家都相信,只要密钥足够长,这个算法就会是安全的。
并查集Union-find
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。
Viterbi algorithm
寻找最可能的隐藏状态序列(Finding most probable sequence of hidden states)。
‘玖’ 举例说明何谓算法,特点是什么评价一个算法的优劣,主要从哪些因素分析
评价算法优劣的四个分析因素:
1.正确性
能正确地实现预定的功能,满足具体问题的需要。处理数据使用的算法是否得当,能不能得到预想的结果。
2.易读性
易于阅读、理解和交流,便于调试、修改和扩充。写出的算法,能不能让别人看明白,能不能让别人明白算法的逻辑?如果通俗易懂,在系统调试和修改或者功能扩充的时候,使系统维护更为便捷。
3.健壮性
输入非法数据,算法也能适当地做出反应后进行处理,不会产生预料不到的运行结果。数据的形式多种多样,算法可能面临着接受各种各样的数据,当算法接收到不适合算法处理的数据,算法本身该如何处理呢?如果算法能够处理异常数据,处理能力越强,健壮性越好。
4.时空性
算法的时空性是该算法的时间性能和空间性能。主要是说算法在执行过程中的时间长短和空间占用多少问题。
算法处理数据过程中,不同的算法耗费的时间和内存空间是不同的。
(9)数学算法的含义和特点扩展阅读:
算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令表示一个或多个操作。此外,一个算法还具有下列5个重要的特性。
(1)、有穷性
一个算法必须总是(对任何合法的输入值)在执行有穷步之后结束,且每一步都可在有穷时间内完成。
(2)、确定性
算法中每一条指令必须有明确的含义,读者理解时不会产生二义性。即对于相同的输入只能得到相同的输出。
(3)、可行性
一个算法是可行的,即算法中描述的操作都是可以通过已经实现的基本运算执行有限次来实现的。
(4)、输入
一个算法有零个或多个的输入,这些输入取自于某个特定的对象的集合。
(5)、输出
一个算法有一个或多个的输出,这些输出是同输入有着某种特定关系的量。
‘拾’ 高二数学 算法的概念 在线等!!!!!!!!!!!!!
算法 参考出处:http://blog.csdn.net/ctu_85/archive/2008/05/11/2432736.aspx
一、什么是算法
算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。算法常常含有重复的步骤和一些比较或逻辑判断。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。时间复杂度用“O(数量级)”来表示,称为“阶”。常见的时间复杂度有: O(1)常数阶;O(log2n)对数阶;O(n)线性阶;O(n2)平方阶。
算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
[font class="Apple-style-span" style="font-weight: bold;" id="bks_etfhxykd"]算法 Algorithm [/font]
算法是在有限步骤内求解某一问题所使用的一组定义明确的规则。通俗点说,就是计算机解题的过程。在这个过程中,无论是形成解题思路还是编写程序,都是在实施某种算法。前者是推理实现的算法,后者是操作实现的算法。
一个算法应该具有以下五个重要的特征:
1、有穷性: 一个算法必须保证执行有限步之后结束;
2、确切性: 算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
算法的设计要求
1)正确性(Correctness)
有4个层次:
A.程序不含语法错误;
B.程序对几组输入数据能够得出满足规格要求的结果;
C.程序对精心选择的、典型的、苛刻的、带有刁难性的几组输入数据能够得出满足规格要求的结果;
D.程序对一切合法的输入数据都能产生满足规格要求的结果。
2)可读性(Readability)
算法的第一目的是为了阅读和交流;
可读性有助于对算法的理解;
可读性有助于对算法的调试和修改。
3)高效率与低存储量
处理速度快;存储容量小
时间和空间是矛盾的、实际问题的求解往往是求得时间和空间的统一、折中。
算法的描述 算法的描述方式(常用的)
算法描述 自然语言
流程图 特定的表示算法的图形符号
伪语言 包括程序设计语言的三大基本结构及自然语言的一种语言
类语言 类似高级语言的语言,例如,类PASCAL、类C语言。
算法的评价 算法评价的标准:时间复杂度和空间复杂度。
1)时间复杂度 指在计算机上运行该算法所花费的时间。用“O(数量级)”来表示,称为“阶”。
常见的时间复杂度有: O(1)常数阶;O(logn)对数阶;O(n)线性阶;O(n^2)平方阶
2)空间复杂度 指算法在计算机上运行所占用的存储空间。度量同时间复杂度。
时间复杂度举例
(a) X:=X+1 ; O(1)
(b) FOR I:=1 TO n DO
X:= X+1; O(n)
(c) FOR I:= 1 TO n DO
FOR J:= 1 TO n DO
X:= X+1; O(n^2)
“算法”一词最早来自公元 9世纪 波斯数学家比阿勒·霍瓦里松的一本影响深远的着作《代数对话录》。20世纪的 英国 数学家 图灵 提出了着名的图灵论点,并抽象出了一台机器,这台机器被我们称之为 图灵机 。图灵的思想对算法的发展起到了重要的作用。
算法是 计算机 处理信息的本质,因为 计算机程序 本质上是一个算法,告诉计算机确切的步骤来执行一个指定的任务,如计算职工的薪水或打印学生的成绩单。 一般地,当算法在处理信息时,数据会从输入设备读取,写入输出设备,可能保存起来以供以后使用。
这是算法的一个简单的例子。
我们有一串随机数列。我们的目的是找到这个数列中最大的数。如果将数列中的每一个数字看成是一颗豆子的大小 可以将下面的算法形象地称为“捡豆子”:
首先将第一颗豆子(数列中的第一个数字)放入口袋中。
从第二颗豆子开始检查,直到最后一颗豆子。如果正在检查的豆子比口袋中的还大,则将它捡起放入口袋中,同时丢掉原先的豆子。 最后口袋中的豆子就是所有的豆子中最大的一颗。
下面是一个形式算法,用近似于 编程语言 的 伪代码 表示
给定:一个数列“list",以及数列的长度"length(list)" largest = list[1] for counter = 2 to length(list): if list[counter] > largest: largest = list[counter] print largest
符号说明:
= 用于表示赋值。即:右边的值被赋予给左边的变量。
List[counter] 用于表示数列中的第 counter 项。例如:如果 counter 的值是5,那么 List[counter] 表示数列中的第5项。
<= 用于表示“小于或等于”。
二、算法设计的方法
1.递推法
递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。设要求问题规模为N的解,当N=1时,解或为已知,或能非常方便地得到解。能采用递推法构造算法的问题有重要的递推性质,即当得到问题规模为i-1的解后,由问题的递推性质,能从已求得的规模为1,2,…,i-1的一系列解,构造出问题规模为I的解。这样,程序可从i=0或i=1出发,重复地,由已知至i-1规模的解,通过递推,获得规模为i的解,直至得到规模为N的解。
【问题】 阶乘计算
问题描述:编写程序,对给定的n(n≤100),计算并输出k的阶乘k!(k=1,2,…,n)的全部有效数字。
由于要求的整数可能大大超出一般整数的位数,程序用一维数组存储长整数,存储长整数数组的每个元素只存储长整数的一位数字。如有m位成整数N用数组a[ ]存储:
N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100
并用a[0]存储长整数N的位数m,即a[0]=m。按上述约定,数组的每个元素存储k的阶乘k!的一位数字,并从低位到高位依次存于数组的第二个元素、第三个元素……。例如,5!=120,在数组中的存储形式为:
3 0 2 1 ……
首元素3表示长整数是一个3位数,接着是低位到高位依次是0、2、1,表示成整数120。
计算阶乘k!可采用对已求得的阶乘(k-1)!连续累加k-1次后求得。例如,已知4!=24,计算5!,可对原来的24累加4次24后得到120。细节见以下程序。
# include <stdio.h>
# include <malloc.h>
......
2.递归
递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。
能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。
【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。
斐波那契数列为:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (当n>1时)。
写成递归函数有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n-2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。
在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。
在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。
由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。
【问题】 组合问题
问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。
【程序】
# include <stdio.h>
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i--)
{ a[k]=i;
if (k>1)
comb(i-1,k-1);
else
{ for (j=a[0];j>0;j--)
printf(“%4d”,a[j]);
printf(“\n”);
}
}
}
void main()
{ a[0]=3;
comb(5,3);
}
3.回溯法
回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。
【问题】 组合问题
问题描述:找出从自然数1,2,…,n中任取r个数的所有组合。
采用回溯法找问题的解,将找到的组合以从小到大顺序存于a[0],a[1],…,a[r-1]中,组合的元素满足以下性质:
(1) a[i+1]>a,后一个数字比前一个大;
(2) a-i<=n-r+1。
按回溯法的思想,找解过程可以叙述如下:
首先放弃组合数个数为r的条件,候选组合从只有一个数字1开始。因该候选解满足除问题规模之外的全部条件,扩大其规模,并使其满足上述条件(1),候选组合改为1,2。继续这一过程,得到候选组合1,2,3。该候选解满足包括问题规模在内的全部条件,因而是一个解。在该解的基础上,选下一个候选解,因a[2]上的3调整为4,以及以后调整为5都满足问题的全部要求,得到解1,2,4和1,2,5。由于对5不能再作调整,就要从a[2]回溯到a[1],这时,a[1]=2,可以调整为3,并向前试探,得到解1,3,4。重复上述向前试探和向后回溯,直至要从a[0]再回溯时,说明已经找完问题的全部解。按上述思想写成程序如下:
【程序】
# define MAXN 100
int a[MAXN];
void comb(int m,int r)
{ int i,j;
i=0;
a=1;
do {
if (a-i<=m-r+1
{ if (i==r-1)
{ for (j=0;j<r;j++)
printf(“%4d”,a[j]);
printf(“\n”);
}
a++;
continue;
}
else
{ if (i==0)
return;
a[--i]++;
}
} while (1)
}
main()
{ comb(5,3);
}
4.贪婪法
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
例如平时购物找钱时,为使找回的零钱的硬币数最少,不考虑找零钱的所有各种发表方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,当不足大面值币种的金额时才去考虑下一种较小面值的币种。这就是在使用贪婪法。这种方法在这里总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如只有面值分别为1、5和11单位的硬币,而希望找回总额为15单位的硬币。按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解应是3个5单位面值的硬币。
【问题】 装箱问题
问题描述:装箱问题可简述如下:设有编号为0、1、…、n-1的n种物品,体积分别为v0、v1、…、vn-1。将这n种物品装到容量都为V的若干箱子里。约定这n种物品的体积均不超过V,即对于0≤i<n,有0<vi≤V。不同的装箱方案所需要的箱子数目可能不同。装箱问题要求使装尽这n种物品的箱子数要少。
若考察将n种物品的集合分划成n个或小于n个物品的所有子集,最优解就可以找到。但所有可能划分的总数太大。对适当大的n,找出所有可能的划分要花费的时间是无法承受的。为此,对装箱问题采用非常简单的近似算法,即贪婪法。该算法依次将物品放到它第一个能放进去的箱子中,该算法虽不能保证找到最优解,但还是能找到非常好的解。不失一般性,设n件物品的体积是按从大到小排好序的,即有v0≥v1≥…≥vn-1。如不满足上述要求,只要先对这n件物品按它们的体积从大到小排序,然后按排序结果对物品重新编号即可。装箱算法简单描述如下:
{ 输入箱子的容积;
输入物品种数n;
按体积从大到小顺序,输入各物品的体积;
预置已用箱子链为空;
预置已用箱子计数器box_count为0;
for (i=0;i<n;i++)
{ 从已用的第一只箱子开始顺序寻找能放入物品i 的箱子j;
if (已用箱子都不能再放物品i)
{ 另用一个箱子,并将物品i放入该箱子;
box_count++;
}
else
将物品i放入箱子j;
}
}
上述算法能求出需要的箱子数box_count,并能求出各箱子所装物品。下面的例子说明该算法不一定能找到最优解,设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。按上述算法计算,需三只箱子,各箱子所装物品分别为:第一只箱子装物品1、3;第二只箱子装物品2、4、5;第三只箱子装物品6。而最优解为两只箱子,分别装物品1、4、5和2、3、6。
若每只箱子所装物品用链表来表示,链表首结点指针存于一个结构中,结构记录尚剩余的空间量和该箱子所装物品链表的首指针。另将全部箱子的信息也构成链表。以下是按以上算法编写的程序。
}
5.分治法
任何一个可以用计算机求解的问题所需的计算时间都与其规模N有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算;n=2时,只要作一次比较即可排好序;n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
如果原问题可分割成k个子问题(1<k≤n),且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
分治法所能解决的问题一般具有以下几个特征:
(1)该问题的规模缩小到一定的程度就可以容易地解决;
(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;
(3)利用该问题分解出的子问题的解可以合并为该问题的解;
(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
分治法在每一层递归上都有三个步骤:
(1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
(2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
(3)合并:将各个子问题的解合并为原问题的解。
6.动态规划法
经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。
为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。以下先用实例说明动态规划方法的使用。
【问题】 求两字符序列的最长公共字符子序列
问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。
考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:
(