导航:首页 > 源码编译 > 机器学习算法看完就忘

机器学习算法看完就忘

发布时间:2022-05-08 04:45:10

❶ 机器学习一般常用的算法有哪些

机器学习是人工智能的核心技术,是学习人工智能必不可少的环节。机器学习中有很多算法,能够解决很多以前难以企的问题,机器学习中涉及到的算法有不少,下面小编就给大家普及一下这些算法。

一、线性回归

一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。当然我们可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。就目前而言,线性回归已经存在了200多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术。

二、Logistic 回归

它是解决二分类问题的首选方法。Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。logistic 函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1并预测类别值。像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。

三、线性判别分析(LDA)

在前面我们介绍的Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。而LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA包括两个,第一就是每个类别的平均值,第二就是所有类别的方差。而在线性判别分析,进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布,因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。

四、决策树

决策树是预测建模机器学习的一种重要算法。决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点。而决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。当然决策树的有点就是决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。

五、朴素贝叶斯

其实朴素贝叶斯是一个简单但是很强大的预测建模算法。而这个模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来。第一种就是每个类别的概率,第二种就是给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当我们的数据是实值时,通常假设一个高斯分布,这样我们可以简单的估计这些概率。而朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。所以说,朴素贝叶斯是一个十分实用的功能。

六、K近邻算法

K近邻算法简称KNN算法,KNN 算法非常简单且有效。KNN的模型表示是整个训练数据集。KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数类别值。而其中的诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同,那么最简单的技术是使用欧几里得距离,我们可以根据每个输入变量之间的差值直接计算出来其数值。当然,KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算。我们还可以随时更新和管理训练实例,以保持预测的准确性。

七、Boosting 和 AdaBoost

首先,Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。而AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显着的是随机梯度提升。当然,AdaBoost 与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每一个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。所以说,由于在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据十分重要。

八、学习向量量化算法(简称 LVQ)

学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。而学习向量量化的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测。最相似的近邻通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或作为预测。如果大家重新调整数据,使其具有相同的范围,就可以获得最佳结果。当然,如果大家发现KNN在大家数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求

❷ 机器学习中需要掌握的算法有哪些

在学习机器学习中,我们需要掌握很多算法,通过这些算法我们能够更快捷地利用机器学习解决更多的问题,让人工智能实现更多的功能,从而让人工智能变得更智能。因此,本文为大家介绍一下机器学习中需要掌握的算法,希望这篇文章能够帮助大家更深入地理解机器学习。
首先我们为大家介绍的是支持向量机学习算法。其实支持向量机算法简称SVM,一般来说,支持向量机算法是用于分类或回归问题的监督机器学习算法。SVM从数据集学习,这样SVM就可以对任何新数据进行分类。此外,它的工作原理是通过查找将数据分类到不同的类中。我们用它来将训练数据集分成几类。而且,有许多这样的线性超平面,SVM试图最大化各种类之间的距离,这被称为边际最大化。而支持向量机算法那分为两类,第一就是线性SVM。在线性SVM中,训练数据必须通过超平面分离分类器。第二就是非线性SVM,在非线性SVM中,不可能使用超平面分离训练数据。
然后我们给大家介绍一下Apriori机器学习算法,需要告诉大家的是,这是一种无监督的机器学习算法。我们用来从给定的数据集生成关联规则。关联规则意味着如果发生项目A,则项目B也以一定概率发生,生成的大多数关联规则都是IF_THEN格式。Apriori机器学习算法工作的基本原理就是如果项目集频繁出现,则项目集的所有子集也经常出现。
接着我们给大家介绍一下决策树机器学习算法。其实决策树是图形表示,它利用分支方法来举例说明决策的所有可能结果。在决策树中,内部节点表示对属性的测试。因为树的每个分支代表测试的结果,并且叶节点表示特定的类标签,即在计算所有属性后做出的决定。此外,我们必须通过从根节点到叶节点的路径来表示分类。
而随机森林机器学习算法也是一个重要的算法,它是首选的机器学习算法。我们使用套袋方法创建一堆具有随机数据子集的决策树。我们必须在数据集的随机样本上多次训练模型,因为我们需要从随机森林算法中获得良好的预测性能。此外,在这种集成学习方法中,我们必须组合所有决策树的输出,做出最后的预测。此外,我们通过轮询每个决策树的结果来推导出最终预测。
在这篇文章中我们给大家介绍了关于机器学习的算法,具体包括随机森林机器学习算法、决策树算法、apriori算法、支持向量机算法。相信大家看了这篇文章以后对机器学习有个更全面的认识,最后祝愿大家都学有所成、学成归来。

❸ 机器学习新手必看十大算法

机器学习新手必看十大算法
本文介绍了机器学习新手需要了解的 10 大算法,包括线性回归、Logistic 回归、朴素贝叶斯、K 近邻算法等。
在机器学习中,有一种叫做“没有免费的午餐”的定理。简而言之,它指出没有任何一种算法对所有问题都有效,在监督学习(即预测建模)中尤其如此。
例如,你不能说神经网络总是比决策树好,反之亦然。有很多因素在起作用,例如数据集的大小和结构。
因此,你应该针对具体问题尝试多种不同算法,并留出一个数据“测试集”来评估性能、选出优胜者。
当然,你尝试的算法必须适合你的问题,也就是选择正确的机器学习任务。打个比方,如果你需要打扫房子,你可能会用吸尘器、扫帚或拖把,但是你不会拿出铲子开始挖土。
大原则
不过也有一个普遍原则,即所有监督机器学习算法预测建模的基础。
机器学习算法被描述为学习一个目标函数 f,该函数将输入变量 X 最好地映射到输出变量 Y:Y = f(X)
这是一个普遍的学习任务,我们可以根据输入变量 X 的新样本对 Y 进行预测。我们不知道函数 f 的样子或形式。如果我们知道的话,我们将会直接使用它,不需要用机器学习算法从数据中学习。
最常见的机器学习算法是学习映射 Y = f(X) 来预测新 X 的 Y。这叫做预测建模或预测分析,我们的目标是尽可能作出最准确的预测。
对于想了解机器学习基础知识的新手,本文将概述数据科学家使用的 top 10 机器学习算法。
1. 线性回归
线性回归可能是统计学和机器学习中最知名和最易理解的算法之一。
预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。
线性回归的表示是一个方程,它通过找到输入变量的特定权重(称为系数 B),来描述一条最适合表示输入变量 x 与输出变量 y 关系的直线。
线性回归
例如:y = B0 + B1 * x
我们将根据输入 x 预测 y,线性回归学习算法的目标是找到系数 B0 和 B1 的值。
可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。
线性回归已经存在了 200 多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术,可以首先尝试一下。
2. Logistic 回归
Logistic 回归是机器学习从统计学中借鉴的另一种技术。它是解决二分类问题的首选方法。
Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。
logistic 函数看起来像一个大的 S,并且可以将任何值转换到 0 到 1 的区间内。这非常实用,因为我们可以规定 logistic 函数的输出值是 0 和 1(例如,输入小于 0.5 则输出为 1)并预测类别值。
Logistic 回归
由于模型的学习方式,Logistic 回归的预测也可以作为给定数据实例(属于类别 0 或 1)的概率。这对于需要为预测提供更多依据的问题很有用。
像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似(相关)的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。
3. 线性判别分析(LDA)
Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。如果你有两个以上的类别,那么线性判别分析是首选的线性分类技术。
LDA 的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA 包括:
每个类别的平均值;
所有类别的方差。
线性判别分析
进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布(钟形曲线),因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。
4. 分类与回归树
决策树是预测建模机器学习的一种重要算法。
决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量 x 和该变量上的一个分割点(假设变量是数字)。
决策树
决策树的叶节点包含一个用于预测的输出变量 y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。
决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。
5. 朴素贝叶斯
朴素贝叶斯是一个简单但是很强大的预测建模算法。
该模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来:1)每个类别的概率;2)给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当你的数据是实值时,通常假设一个高斯分布(钟形曲线),这样你可以简单的估计这些概率。
贝叶斯定理
朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。
6. K 近邻算法
KNN 算法非常简单且有效。KNN 的模型表示是整个训练数据集。是不是很简单?
KNN 算法在整个训练集中搜索 K 个最相似实例(近邻)并汇总这 K 个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数(或最常见的)类别值。
诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同(例如都是用英寸表示),那么最简单的技术是使用欧几里得距离,你可以根据每个输入变量之间的差值直接计算出来其数值。
K 近邻算法
KNN 需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算(或学习)。你还可以随时更新和管理训练实例,以保持预测的准确性。
距离或紧密性的概念可能在非常高的维度(很多输入变量)中会瓦解,这对算法在你的问题上的性能产生负面影响。这被称为维数灾难。因此你最好只使用那些与预测输出变量最相关的输入变量。
7. 学习向量量化
K 近邻算法的一个缺点是你需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。
学习向量量化
LVQ 的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测(类似 K 近邻算法)。最相似的近邻(最佳匹配的码本向量)通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或(回归中的实际值)作为预测。如果你重新调整数据,使其具有相同的范围(比如 0 到 1 之间),就可以获得最佳结果。
如果你发现 KNN 在你的数据集上达到很好的结果,请尝试用 LVQ 减少存储整个训练数据集的内存要求。
8. 支持向量机(SVM)
支持向量机可能是最受欢迎和最广泛讨论的机器学习算法之一。
超平面是分割输入变量空间的一条线。在 SVM 中,选择一条可以最好地根据输入变量类别(类别 0 或类别 1)对输入变量空间进行分割的超平面。在二维中,你可以将其视为一条线,我们假设所有的输入点都可以被这条线完全的分开。SVM 学习算法找到了可以让超平面对类别进行最佳分割的系数。
支持向量机
超平面和最近的数据点之间的距离被称为间隔。分开两个类别的最好的或最理想的超平面具备最大间隔。只有这些点与定义超平面和构建分类器有关。这些点被称为支持向量,它们支持或定义了超平面。实际上,优化算法用于寻找最大化间隔的系数的值。
SVM 可能是最强大的立即可用的分类器之一,值得一试。
9. Bagging 和随机森林
随机森林是最流行和最强大的机器学习算法之一。它是 Bootstrap Aggregation(又称 bagging)集成机器学习算法的一种。
bootstrap 是从数据样本中估算数量的一种强大的统计方法。例如平均数。你从数据中抽取大量样本,计算平均值,然后平均所有的平均值以便更好的估计真实的平均值。
bagging 使用相同的方法,但是它估计整个统计模型,最常见的是决策树。在训练数据中抽取多个样本,然后对每个数据样本建模。当你需要对新数据进行预测时,每个模型都进行预测,并将所有的预测值平均以便更好的估计真实的输出值。
随机森林
随机森林是对这种方法的一种调整,在随机森林的方法中决策树被创建以便于通过引入随机性来进行次优分割,而不是选择最佳分割点。
因此,针对每个数据样本创建的模型将会与其他方式得到的有所不同,不过虽然方法独特且不同,它们仍然是准确的。结合它们的预测可以更好的估计真实的输出值。
如果你用方差较高的算法(如决策树)得到了很好的结果,那么通常可以通过 bagging 该算法来获得更好的结果。
10. Boosting 和 AdaBoost
Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。
AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显着的是随机梯度提升。
AdaBoost
AdaBoost与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。
因为在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据非常重要。
总结
初学者在面对各种机器学习算法时经常问:“我应该用哪个算法?”这个问题的答案取决于很多因素,包括:(1)数据的大小、质量和特性;(2)可用的计算时间;(3)任务的紧迫性;(4)你想用这些数据做什么。
即使是经验丰富的数据科学家在尝试不同的算法之前,也无法分辨哪种算法会表现最好。虽然还有很多其他的机器学习算法,但本篇文章中讨论的是最受欢迎的算法。如果你是机器学习的新手,这将是一个很好的学习起点。

❹ 机器学习有哪些算法

1. 线性回归
在统计学和机器学习领域,线性回归可能是最广为人知也最易理解的算法之一。
2. Logistic 回归
Logistic 回归是机器学习从统计学领域借鉴过来的另一种技术。它是二分类问题的首选方法。
3. 线性判别分析
Logistic 回归是一种传统的分类算法,它的使用场景仅限于二分类问题。如果你有两个以上的类,那么线性判别分析算法(LDA)是首选的线性分类技术。
4.分类和回归树
决策树是一类重要的机器学习预测建模算法。
5. 朴素贝叶斯
朴素贝叶斯是一种简单而强大的预测建模算法。
6. K 最近邻算法
K 最近邻(KNN)算法是非常简单而有效的。KNN 的模型表示就是整个训练数据集。
7. 学习向量量化
KNN 算法的一个缺点是,你需要处理整个训练数据集。
8. 支持向量机
支持向量机(SVM)可能是目前最流行、被讨论地最多的机器学习算法之一。
9. 袋装法和随机森林
随机森林是最流行也最强大的机器学习算法之一,它是一种集成机器学习算法。

想要学习了解更多机器学习的知识,推荐CDA数据分析师课程。CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。点击预约免费试听课。

❺ 看不懂机器学习的算法,学人工智能怎么办

许多人都是纸上谈兵的没有实际的操作。在这段期间必须要学习多一些知识。在实际情况之下。都可以懂得一二。因为许多条件的限制。几多人都没有法进行实习。

❻ 机器学习算法的机器学习算法走起来

尽管机器学习算法能够提供多种好处,但是在使用机器学习算法过程中也有可能导致严重问题。机器学习算法初学者需要理解所输入数据、项目范围和目标,以及工作中使用的机器学习算法。机器学习是很多大数据项目背后的重要推动力量,但是即便IT部门投入大量精力,在机器学习算法具体实施过程当中事情也有可能朝着错误的方向发展。不幸的是,如果你没有牢固掌握机器学习算法所输入数据的质量和准确性、实际的业务目标以及真实环境限制,那么机器学习算法预测模型很有可能具有严重的潜在风险(比如无法避免黑天鹅效应)。对于机器学习算法和大数据初学者来说,很容易编写出效率低下的机器学习算法复杂模型或者对特定数据进行重复分析。事实上,在将这种机器学习算法“广义”模型应用到生产环境之前,很难判定哪种才算是最佳方式。另外一种机器学习算法挑战是成功的定义会随着不同的使用情况而出现巨大差异。针对特定机器学习算法测试数据,可以使用数十种机器学习算法指标来描述机器学习算法模型数据输出结果的质量和准确性。即机器学习算法便对于IT专家来说,其至少需要熟悉机器学习算法输出结果的相关指标,并且了解各种机器学习算法象限知识,比如真正(True Positive)被模型预测为正的正样本、真负(True Negative)被模型预测为负的负样本、假正(False Positive )被模型预测为正的负样本、假负(False Negative)被模型预测为负的正样本等。在机器学习算法和大数据领域,许多关键机器学习算法指标都是根据这四种基本机器学习算法测量结果推导而来。比如,通常会使用正确标记(真正+真负)的实例数量除以总实例数量来定义机器学习算法整体准确性。如果想要了解究竟有多少个正确的机器学习算法正实例,敏感性(或者召回率)就是真正的机器学习算法数量除以实际正数量(真正+假正)所得到的比例。通常机器学习算法精确度也是十分重要的,也就是真正(True Positive)的数量除以所有被标记为正(真正+假正)的项目之和。机器学习算法将所有都标记为正的简化模型将会有100%的召回率,但是机器学习算法精确度和准确性会非常差——这种机器学习算法模型能够找到一切,但是机器学习算法却不能将小麦从谷壳当中挑选出来。因此通常需要机器学习算法从这些指标当中进行抉择以寻找最佳平衡点。在一些基于机器学习算法的大数据应用领域当中,比如机器学习算法针对性营销,机器学习算法相比于随机选择目标客户这种传统方式来说能够提高20%的效率。在其他领域当中,比如对100万人进行癌症检查时,即便是99%的准确率也会导致极其严重的后果:假设癌症的发病率非常低,那么这1%当中的大部分就是假正,从而导致需要对将近1万人进行不必要的治疗。这种情况促使我们开始思考机器学习算法对于IT领域的影响。首先,主机存储和计算平台应该和尝试学习的种类相匹配。有时候应该进行离线机器学习算法,机器学习算法将结果模型应用在生产环境的简单计算步骤当中。而在其他时间机器学习算法是持续或者反复出现的(比如强化机器学习算法),需要更加靠近当前的数据流。相比于使用其他大数据扩展集群(比如Apache Mahout、MLlib和Madlib)的可分区库来说,一些机器学习算法能够实现更好可扩展性,然而其他方式可能需要更高速的计算互联通道以及读写事务存储架构以提高计算效率。机器学习算法可以使用一些内存工具来完成大型交付式数据挖掘或者预测工作,并且机器学习算法降低延迟。还有一些根据生产环境当中API调用情况进行收费的云主机机器学习算法服务,对于存储在云中的数据来说这种方式能提升成本效率。如果你已经拥有固定的程序业务领域, 只是想要随意探索一下或者刚刚开始研究机器学习算法,那么机器学习算法可以使用Python和其他语言当中提供的相关免费包。你甚至可以在微软Azure当中注册一个免费开发、基于云的主机学习工作室。这些机器学习算法产品当中的大多数都可以运行在本地主机的小型数据集合上,或者机器学习算法针对生产环境扩展为大型数据集合。机器学习算法是一个十分热门的领域,每天我们都能听到厂商保证自己的特定机器学习算法产品能够简化平均业务分析过程。所有这些机器学习算法预测模型都不具有人工智能。是的,通过寻找和探索数据方面的更深层次模型,其能够提供真实和多种业务优势,但是通过这种机器学习算法方式建立的一切都是相关性。就像学校经常告诉我们的一样,相关性不代表明确的因果关系。但是,考虑到现在应用机器学习算法技术已经变得非常容易——只需要研究感兴趣的机器学习算法数据集合,因此所有IT部门都可以学习自己的内部专业知识——收集和清除数据、制定开发流程、协助模型效果等,并且机器学习算法应用在生产环境当中。在数据科学方面的专业知识是非常宝贵和难得的,但是考虑到这个机器学习算法领域正在发生的快速变化,企业应该马上开始机器学习算法研究工作,不要期望获得成熟的科学家团队来顺利完成机器学习算法这样的任务。

❼ 看机器学习论文时,看不懂数学公式怎么办

你如果要搞研究,或者想实现论文里的算法,就必须要看懂。
加油吧。机器学习这条路不容易。
不懂的话,补一些数学知识,比如贝叶斯概率论,微积分,概率图模型等等。

❽ 人工智能学会如何提高大脑的记忆力

说到黑匣子,没有比人脑更黑的了。科学家感叹道,我们的灰质问题非常复杂,它本身并不能完全理解。

但是如果我们不能挖掘我们自己的大脑,也许机器可以为我们做到这一点。在最新一期的“自然通信” 杂志上,宾夕法尼亚大学心理学家迈克尔卡哈纳领导的研究人员表明,机器学习算法- 众所周知的不可思议的系统本身- 可用于解码并增强人类记忆力。怎么样?通过触发向大脑提供精确定时的电脉冲。

换句话说,研究人员可以使用一个黑匣子来解锁另一个黑匣子的潜力。一方面这听起来像是对一个荒谬困难的问题的一个相当优雅的解决方案,另一方面听起来像是一场技术爆发式恐怖片的开始。

当谈到大脑测量时,最好的录音来自颅内。但是,人们和机构审查委员会通常不会以科学为名打开头骨。因此Kahana和他的同事们与25位癫痫患者合作,每位患者的大脑中植入了100到200个电极(监测癫痫相关的电活动)。Kahana和他的团队搭载这些植入物,使用电极在记忆任务中记录高分辨率的大脑活动。

首先,研究人员了解大脑记忆某些东西时的样子。当患者阅读并试图内化单词列表时,Kahana和他的团队从每个植入电极每秒收集数千次电压测量数据。后来,他们测试了患者的回忆建立数据,了解哪些大脑活动模式与记忆单词和忘记单词有关。

然后他们又做了。然后再次。在对每个测试对象进行两次或三次访问之后,他们收集了足够的训练数据以生成针对患者的算法,这些算法可以根据每个患者的电极活性单独预测每个患者可能记住哪些字。

这是踢球者。这些电极不只是读神经活动,他们也可以刺激它。因此,研究人员试图刺激大脑改善- 或者正如他们所说的那样,“拯救”- 实时记忆的形成。每隔几秒钟,主题会看到一个新单词,新训练的算法将决定大脑是否准备好记住它。卡哈纳说:“闭环系统让我们记录受试者大脑的状态,分析它,并决定是否触发刺激,全部在几百毫秒内完成。

它的工作。研究人员的系统使患者平均回忆词的能力提高了15%。

这并不是Kahana实验室第一次探索大脑刺激对记忆的影响。去年,该组织表明,电极脉冲似乎会改善或恶化召回,这取决于研究人员何时提供。在该研究中,当研究人员在低功能期间刺激大脑的记忆特异性区域(高功能时期的刺激具有相反效果)时,测试对象得分更高。这是一个重大发现,但在治疗上无用;研究人员只能在进行记忆测试后才能识别记忆和大脑状态之间的联系。从脑部增强的角度来看,你真正想要的是在记忆过程中传递脉冲。

现在,Kahana和他的同事似乎利用他们的机器学习算法关闭了循环。Kahana说:“我们只是用它来识别猫的图像,而不是用它来识别猫的图像,而是用它来构建一个解码器- 这个东西可以看电子活动,并说出大脑是否处于有利于学习的状态。如果大脑看起来像是在有效地编码记忆,那么研究人员就会放弃它。如果不是这样,他们的系统会迅速提供电脉冲,将其推入更高功能的状态- 就像大脑的起搏器一样。

“这不是一个whom效应,但它绝对是有前途的,”加州大学圣地亚哥神经科学家布拉德利沃伊克说,谁是研究无关。现在的问题是这个领域的未来工作是否会产生更好的结果。如果患者的大脑植入了更多和更精确的电极,则算法可以在更小的时间尺度上解码更多的神经特征,具有更多的特异性。更多的培训数据也可能有所帮助;大多数癫痫患者最多只能参加像这样的研究几周,这限制了研究人员与他们一起度过的时间。在三次以上的会话中训练的机器学习算法可能比Kahana最近的研究表现要好。

但即使有更高的分辨率和更多的训练数据,科学家也需要解决使用不透明算法研究和操纵大脑的意义。事实是,虽然Kahana的系统可以在特定情况下改善词汇回忆,但他并不确切知道它如何改善功能。这就是机器学习的本质。

幸运的是,Kahana的团队已经考虑到了这一点,有些算法比其他算法更容易审查。对于这项特定的研究,研究人员使用了一种简单的线性分类器,这使得他们可以得出一些关于个体电极活动如何可能有助于模型区分大脑活动模式的能力的推论。“在这一点上,我们现在还不能确定我们用于记录大脑活动的功能之间是否存在相互作用,”负责该研究的机器学习分析的UPenn心理学家Youssef Ezzyat说。

更复杂的深度学习技术不一定会转化为更大的认知增强。但是如果他们这样做了,研究人员可能会绞尽脑汁地理解机器决定提供大脑增强的电子冲动。或者,如果他们真的变成恶魔般的话,他们会阻止他们。

❾ 机器学习的书看不懂怎么办

1:个人觉得李航的《统计学习方法》还算可以,属于基本的机器学习入门书籍。

2:具体可以结合andrew ng的机器学习视频看--->可以去网易公开课找到,斯坦福大学机器学习

3:尝试实现一些最基础的算法。最简单的比如朴素贝叶斯分类器,我当年实现第一个机器学习算法,现在想想还是很激动的。后面的像SVM,决策树也可以试试。

4:一定要做一点应用,不然,感觉都是理论,一点感觉都不会有的。比如上面的朴素贝叶斯分类器就可以做一个垃圾邮件过滤系统。

5:还有一本书似乎是韩家炜的数据挖掘导论,没读过,但是网上推荐挺多的。

6:等你到了一定水平,就可以啃啃PRML了,这个太经典了,有点类似算法中的算法导论

❿ 干货 | 基础机器学习算法

本篇内容主要是面向机器学习初学者,介绍常见的机器学习算法,当然,欢迎同行交流。

哲学要回答的基本问题是从哪里来、我是谁、到哪里去,寻找答案的过程或许可以借鉴机器学习的套路:组织数据->挖掘知识->预测未来。组织数据即为设计特征,生成满足特定格式要求的样本,挖掘知识即建模,而预测未来就是对模型的应用。

特征设计依赖于对业务场景的理解,可分为连续特征、离散特征和组合高阶特征。本篇重点是机器学习算法的介绍,可以分为监督学习和无监督学习两大类。

无监督学习算法很多,最近几年业界比较关注主题模型,LSA->PLSA->LDA 为主题模型三个发展阶段的典型算法,它们主要是建模假设条件上存在差异。LSA假设文档只有一个主题,PLSA 假设各个主题的概率分布不变(theta 都是固定的),LDA 假设每个文档和词的主题概率是可变的。

LDA 算法本质可以借助上帝掷骰子帮助理解,详细内容可参加 Rickjin 写的《 LDA 数据八卦》文章,浅显易懂,顺便也科普了很多数学知识,非常推荐。

监督学习可分为分类和回归,感知器是最简单的线性分类器,现在实际应用比较少,但它是神经网络、深度学习的基本单元。

线性函数拟合数据并基于阈值分类时,很容易受噪声样本的干扰,影响分类的准确性。逻辑回归(Logistic Regression)利用 sigmoid 函数将模型输出约束在 0 到 1 之间,能够有效弱化噪声数据的负面影响,被广泛应用于互联网广告点击率预估。

逻辑回归模型参数可以通过最大似然求解,首先定义目标函数 L ( theta ),然后 log 处理将目标函数的乘法逻辑转化为求和逻辑(最大化似然概率 -> 最小化损失函数),最后采用梯度下降求解。

相比于线性分类去,决策树等非线性分类器具有更强的分类能力,ID3 和 C4.5 是典型的决策树算法,建模流程基本相似,两者主要在增益函数(目标函数)的定义不同。

线性回归和线性分类在表达形式上是类似的,本质区别是分类的目标函数是离散值,而回归的目标函数是连续值。目标函数的不同导致回归通常基于最小二乘定义目标函数,当然,在观测误差满足高斯分布的假设情况下,最小二乘和最大似然可以等价。

当梯度下降求解模型参数时,可以采用 Batch 模式或者 Stochastic 模式,通常而言,Batch 模式准确性更高,Stochastic 模式复杂度更低。

上文已经提到,感知器虽然是最简单的线性分类器,但是可以视为深度学习的基本单元,模型参数可以由自动编码( Auto Encoder )等方法求解。

深度学习的优势之一可以理解为特征抽象,从底层特征学习获得高阶特征,描述更为复杂的信息结构。例如,从像素层特征学习抽象出描述纹理结构的边缘轮廓特征,更进一步学习获得表征物体局部的更高阶特征。

俗话说三个臭皮匠赛过诸葛亮,无论是线性分类还是深度学习,都是单个模型算法单打独斗,有没有一种集百家之长的方法,将模型处理数据的精度更进一步提升呢?当然,Model Ensembe l就是解决这个问题。Bagging 为方法之一,对于给定数据处理任务,采用不同模型/参数/特征训练多组模型参数,最后采用投票或者加权平均的方式输出最终结果。

Boosting为Model Ensemble 的另外一种方法,其思想为模型每次迭代时通过调整错误样本的损失权重提升对数据样本整体的处理精度,典型算法包括 AdaBoost 、GBDT 等。

不同的数据任务场景,可以选择不同的 Model Ensemble 方法,对于深度学习,可以对隐层节点采用 DropOut 的方法实现类似的效果。

介绍了这么多机器学习基础算法,说一说评价模型优劣的基本准则。欠拟合和过拟合是经常出现的两种情况,简单的判定方法是比较训练误差和测试误差的关系,当欠拟合时,可以设计更多特征来提升模型训练精度,当过拟合时,可以优化特征量降低模型复杂度来提升模型测试精度。

特征量是模型复杂度的直观反映,模型训练之前设定输入的特征量是一种方法,另外一种比较常用的方法是在模型训练过程中,将特征参数的正则约束项引入目标函数/损失函数,基于训练过程筛选优质特征。

模型调优是一个细致活,最终还是需要能够对实际场景给出可靠的预测结果,解决实际问题。期待学以致用! 作者 晓惑 本文转自阿里技术,转载需授权

阅读全文

与机器学习算法看完就忘相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:581
python员工信息登记表 浏览:377
高中美术pdf 浏览:161
java实现排列 浏览:513
javavector的用法 浏览:982
osi实现加密的三层 浏览:233
大众宝来原厂中控如何安装app 浏览:916
linux内核根文件系统 浏览:243
3d的命令面板不见了 浏览:526
武汉理工大学服务器ip地址 浏览:149
亚马逊云服务器登录 浏览:525
安卓手机如何进行文件处理 浏览:71
mysql执行系统命令 浏览:930
php支持curlhttps 浏览:143
新预算法责任 浏览:444
服务器如何处理5万人同时在线 浏览:251
哈夫曼编码数据压缩 浏览:428
锁定服务器是什么意思 浏览:385
场景检测算法 浏览:617
解压手机软件触屏 浏览:352