导航:首页 > 源码编译 > c语言插值算法

c语言插值算法

发布时间:2022-05-09 07:32:55

Ⅰ 求用c语言编写牛顿插值法

牛顿插值法:

#include<stdio.h>
#include<alloc.h>
float Language(float *x,float *y,float xx,int n)
{
int i,j;
float *a,yy=0.0;
a=(float *)malloc(n*sizeof(float));
for(i=0;i<=n-1;i++)
{
a[i]=y[i];
for(j=0;j<=n-1;j++)
if(j!=i)a[i]*=(xx-x[j])/(x[i]-x[j]);
yy+=a[i];
}
free(a);
return yy;
}
void main()
{
float x[4]={0.56160,0.5628,0.56401,0.56521};
float y[4]={0.82741,0.82659,0.82577,0.82495};
float xx=0.5635,yy;
float Language(float *,float *,float,int);
yy=Language(x,y,xx,4);
printf("x=%f,y=%f\n",xx,yy);
getchar();
}
‍2.牛顿插值法#include<stdio.h>
#include<math.h>
#define N 4
void Difference(float *x,float *y,int n)
{
float *f;
int k,i;
f=(float *)malloc(n*sizeof(float));
for(k=1;k<=n;k++)
{
f[0]=y[k];
for(i=0;i<k;i++)
f[i+1]=(f[i]-y[i])/(x[k]-x[i]);
y[k]=f[k];
}
return;
}
main()
{
int i;
float varx=0.895,b;
float x[N+1]={0.4,0.55,0.65,0.8,0.9};
float y[N+1]={0.41075,0.57815,0.69675,0.88811,1.02652};
Difference(x,(float *)y,N);
b=y[N];
for(i=N-1;i>=0;i--)b=b*(varx-x[i])+y[i];
printf("Nn(%f)=%f",varx,b);
getchar();
}
留下个邮箱,我发给你:牛顿插值法的程序设计与应用

Ⅱ C语言的拉格朗日插值法

double 型,输入格式要用 %lf, 不能用 %f。
(double 型,输出格式 可以用 %f 的。 千万不要混淆,以为输入也允许。)
改正后再看有无别的问题。另外注意运算中分母不能为0。

Ⅲ 求c语言写的双三次插值函数

void SPL(int n, double *x, double *y, int ni, double *xi, double *yi); 是你所要。
已知 n 个点 x,y; x 必须已按顺序排好。要插值 ni 点,横坐标 xi[], 输出 yi[]。
程序里用double 型,保证计算精度。

SPL调用现成的程序。
现成的程序很多。端点处理方法不同,结果会有不同。想同matlab比较,你需 尝试 调用 spline()函数 时,令 end1 为 1, 设 slope1 的值,令 end2 为 1 设 slope2 的值。

#include <stdio.h>
#include <math.h>

int spline (int n, int end1, int end2,
double slope1, double slope2,
double x[], double y[],
double b[], double c[], double d[],
int *iflag)
{
int nm1, ib, i, ascend;
double t;
nm1 = n - 1;
*iflag = 0;
if (n < 2)
{ /* no possible interpolation */
*iflag = 1;
goto LeaveSpline;
}
ascend = 1;
for (i = 1; i < n; ++i) if (x[i] <= x[i-1]) ascend = 0;
if (!ascend)
{
*iflag = 2;
goto LeaveSpline;
}
if (n >= 3)
{
d[0] = x[1] - x[0];
c[1] = (y[1] - y[0]) / d[0];
for (i = 1; i < nm1; ++i)
{
d[i] = x[i+1] - x[i];
b[i] = 2.0 * (d[i-1] + d[i]);
c[i+1] = (y[i+1] - y[i]) / d[i];
c[i] = c[i+1] - c[i];
}
/* ---- Default End conditions */
b[0] = -d[0];
b[nm1] = -d[n-2];
c[0] = 0.0;
c[nm1] = 0.0;
if (n != 3)
{
c[0] = c[2] / (x[3] - x[1]) - c[1] / (x[2] - x[0]);
c[nm1] = c[n-2] / (x[nm1] - x[n-3]) - c[n-3] / (x[n-2] - x[n-4]);
c[0] = c[0] * d[0] * d[0] / (x[3] - x[0]);
c[nm1] = -c[nm1] * d[n-2] * d[n-2] / (x[nm1] - x[n-4]);
}
/* Alternative end conditions -- known slopes */
if (end1 == 1)
{
b[0] = 2.0 * (x[1] - x[0]);
c[0] = (y[1] - y[0]) / (x[1] - x[0]) - slope1;
}
if (end2 == 1)
{
b[nm1] = 2.0 * (x[nm1] - x[n-2]);
c[nm1] = slope2 - (y[nm1] - y[n-2]) / (x[nm1] - x[n-2]);
}
/* Forward elimination */
for (i = 1; i < n; ++i)
{
t = d[i-1] / b[i-1];
b[i] = b[i] - t * d[i-1];
c[i] = c[i] - t * c[i-1];
}
/* Back substitution */
c[nm1] = c[nm1] / b[nm1];
for (ib = 0; ib < nm1; ++ib)
{
i = n - ib - 2;
c[i] = (c[i] - d[i] * c[i+1]) / b[i];
}
b[nm1] = (y[nm1] - y[n-2]) / d[n-2] + d[n-2] * (c[n-2] + 2.0 * c[nm1]);
for (i = 0; i < nm1; ++i)
{
b[i] = (y[i+1] - y[i]) / d[i] - d[i] * (c[i+1] + 2.0 * c[i]);
d[i] = (c[i+1] - c[i]) / d[i];
c[i] = 3.0 * c[i];
}
c[nm1] = 3.0 * c[nm1];
d[nm1] = d[n-2];
}
else
{
b[0] = (y[1] - y[0]) / (x[1] - x[0]);
c[0] = 0.0;
d[0] = 0.0;
b[1] = b[0];
c[1] = 0.0;
d[1] = 0.0;
}
LeaveSpline:
return 0;
}

double seval (int n, double u,
double x[], double y[],
double b[], double c[], double d[],
int *last)
{
int i, j, k;
double w;
i = *last;
if (i >= n-1) i = 0;
if (i < 0) i = 0;
if ((x[i] > u) || (x[i+1] < u))
{
i = 0;
j = n;
do
{
k = (i + j) / 2;
if (u < x[k]) j = k;
if (u >= x[k]) i = k;
}
while (j > i+1);
}
*last = i;
w = u - x[i];
w = y[i] + w * (b[i] + w * (c[i] + w * d[i]));
return (w);
}

void SPL(int n, double *x, double *y, int ni, double *xi, double *yi)
{
double *b, *c, *d;
int iflag,last,i;
b = (double *) malloc(sizeof(double) * n);
c = (double *)malloc(sizeof(double) * n);
d = (double *)malloc(sizeof(double) * n);
if (!d) { printf("no enough memory for b,c,d\n");}
else {
spline (n,0,0,0,0,x,y,b,c,d,&iflag);
if (iflag==0) printf("I got coef b,c,d now\n"); else printf("x not in order or other error\n");
for (i=0;i<ni;i++) yi[i] = seval(ni,xi[i],x,y,b,c,d,&last);
free(b);free(c);free(d);
};
}

main(){
double x[6]={0.,1.,2.,3.,4.,5};
double y[6]={0.,0.5,2.0,1.6,0.5,0.0};
double u[8]={0.5,1,1.5,2,2.5,3,3.5,4};
double s[8];
int i;
SPL(6, x,y, 8, u, s);
for (i=0;i<8;i++) printf("%lf %lf \n",u[i],s[i]);
return 0;
}

Ⅳ 牛顿算法和拉格朗日插值算法的C语言实现

已经编译运行确认:

#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>
typedef struct data
{
float x;
float y;
}Data;//变量x和函数值y的结构
Data d[20];//最多二十组数据
float f(int s,int t)//牛顿插值法,用以返回插商
{
if(t==s+1)
return (d[t].y-d[s].y)/(d[t].x-d[s].x);
else
return (f(s+1,t)-f(s,t-1))/(d[t].x-d[s].x);
}
float Newton(float x,int count)
{
int n;
while(1)
{
cout<<"请输入n值(即n次插值):";//获得插值次数
cin>>n;
if(n<=count-1)// 插值次数不得大于count-1次
break;
else
system("cls");
}
//初始化t,y,yt。
float t=1.0;
float y=d[0].y;
float yt=0.0;
//计算y值
for(int j=1;j<=n;j++)
{
t=(x-d[j-1].x)*t;
yt=f(0,j)*t;
//cout<<f(0,j)<<endl;
y=y+yt;
}
return y;
}
float lagrange(float x,int count)
{
float y=0.0;
for(int k=0;k<count;k++)//这儿默认为count-1次插值
{
float p=1.0;//初始化p
for(int j=0;j<count;j++)
{//计算p的值
if(k==j)continue;//判断是否为同一个数
p=p*(x-d[j].x)/(d[k].x-d[j].x);
}
y=y+p*d[k].y;//求和
}
return y;//返回y的值
}
void main()
{
float x,y;
int count;
while(1)
{
cout<<"请输入x[i],y[i]的组数,不得超过20组:";//要求用户输入数据组数
cin>>count;
if(count<=20)
break;//检查输入的是否合法
system("cls");
}
//获得各组数据
for(int i=0;i<count;i++)
{
cout<<"请输入第"<<i+1<<"组x的值:";
cin>>d[i].x;
cout<<"请输入第"<<i+1<<"组y的值:";
cin>>d[i].y;
system("cls");
}
cout<<"请输入x的值:";//获得变量x的值
cin>>x;
while(1)
{
int choice=3;
cout<<"请您选择使用哪种插值法计算:"<<endl;
cout<<" (0):退出"<<endl;
cout<<" (1):Lagrange"<<endl;
cout<<" (2):Newton"<<endl;
cout<<"输入你的选择:";
cin>>choice;//取得用户的选择项
if(choice==2)
{
cout<<"你选择了牛顿插值计算方法,其结果为:";
y=Newton(x,count);break;//调用相应的处理函数
}
if(choice==1)
{
cout<<"你选择了拉格朗日插值计算方法,其结果为:";
y=lagrange(x,count);break;//调用相应的处理函数
}
if(choice==0)
break;
system("cls");
cout<<"输入错误!!!!"<<endl;
}
cout<<x<<" , "<<y<<endl;//输出最终结果

}

Ⅳ 用C语言编一个线性插值的小程序,很着急

#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>
typedef struct data
{
float x;
float y;
}Data;//变量x和函数值y的结构
Data d[20];//最多二十组数据
float f(int s,int t)//牛顿插值法,用以返回插商
{
if(t==s+1)
return (d[t].y-d[s].y)/(d[t].x-d[s].x);
else
return (f(s+1,t)-f(s,t-1))/(d[t].x-d[s].x);
}
float Newton(float x,int count)
{
int n;
while(1)
{
cout<<"请输入n值(即n次插值):";//获得插值次数
cin>>n;
if(n<=count-1)// 插值次数不得大于count-1次
break;
else
system("cls");
}
//初始化t,y,yt。
float t=1.0;
float y=d[0].y;
float yt=0.0;
//计算y值
for(int j=1;j<=n;j++)
{
t=(x-d[j-1].x)*t;
yt=f(0,j)*t;
//cout<<f(0,j)<<endl;
y=y+yt;
}
return y;
}
float lagrange(float x,int count)
{
float y=0.0;
for(int k=0;k<count;k++)//这儿默认为count-1次插值
{
float p=1.0;//初始化p
for(int j=0;j<count;j++)
{//计算p的值
if(k==j)continue;//判断是否为同一个数
p=p*(x-d[j].x)/(d[k].x-d[j].x);
}
y=y+p*d[k].y;//求和
}
return y;//返回y的值
}
void main()
{
float x,y;
int count;
while(1)
{
cout<<"请输入x[i],y[i]的组数,不得超过20组:";//要求用户输入数据组数
cin>>count;
if(count<=20)
break;//检查输入的是否合法
system("cls");
}
//获得各组数据
for(int i=0;i<count;i++)
{
cout<<"请输入第"<<i+1<<"组x的值:";
cin>>d[i].x;
cout<<"请输入第"<<i+1<<"组y的值:";
cin>>d[i].y;
system("cls");
}
cout<<"请输入x的值:";//获得变量x的值
cin>>x;
while(1)
{
int choice=3;
cout<<"请您选择使用哪种插值法计算:"<<endl;
cout<<" (0):退出"<<endl;
cout<<" (1):Lagrange"<<endl;
cout<<" (2):Newton"<<endl;
cout<<"输入你的选择:";
cin>>choice;//取得用户的选择项
if(choice==2)
{
cout<<"你选择了牛顿插值计算方法,其结果为:";
y=Newton(x,count);break;//调用相应的处理函数
}
if(choice==1)
{
cout<<"你选择了拉格朗日插值计算方法,其结果为:";
y=lagrange(x,count);break;//调用相应的处理函数
}
if(choice==0)
break;
system("cls");
cout<<"输入错误!!!!"<<endl;
}
cout<<x<<" , "<<y<<endl;//输出最终结果

}

Ⅵ 牛顿的插值法用C语言怎么编写怎么编啊

程序代码如下。
希望能帮助到你!
牛顿插值法
#include<stdio.h>
#include<math.h>
#define
n
4
void
difference(float
*x,float
*y,int
n)
{
float
*f;
int
k,i;
f=(float
*)malloc(n*sizeof(float));
for(k=1;k<=n;k
)
{
f[0]=y[k];
for(i=0;i<k;i
)
f[i
1]=(f[i]-y[i])/(x[k]-x[i]);
y[k]=f[k];
}
return;
}
main()
{
int
i;
float
varx=0.895,b;
float
x[n
1]={0.4,0.55,0.65,0.8,0.9};
float
y[n
1]={0.41075,0.57815,0.69675,0.88811,1.02652};
difference(x,(float
*

Ⅶ 用C语言编写一个线性插值程序

#include<stdio.h>

doubleLerp(doublex0,doubley0,doublex1,doubley1,doublex)
{
doubledy=y1-y0;
if(dy==0){
printf("除0错误! ");
return0;
}
returnx*(x1-x0)/dy;
}
intmain()
{
doublex0,x1,y1,y0,x,y;
printf("Inptux0y0x1y1x:");
scanf("%lf%lf%lf%lf%lf",&x0,&y0,&x1,&y1,&x);
y=Lerp(x0,y0,x1,y1,x);
printf("y=%lf ",y);
return0;

}

Ⅷ 三次样条插值用c语言具体怎么做

void SPL(int n, double *x, double *y, int ni, double *xi, double *yi); 是你所要。
已知 n 个点 x,y; x 必须已按顺序排好。要插值 ni 点,横坐标 xi[], 输出 yi[]。
程序里用double 型,保证计算精度。

SPL调用现成的程序。
现成的程序很多。端点处理方法不同,结果会有不同。想同matlab比较,你需 尝试 调用 spline()函数 时,令 end1 为 1, 设 slope1 的值,令 end2 为 1 设 slope2 的值。

阅读全文

与c语言插值算法相关的资料

热点内容
我的世界命令方块该怎么拿 浏览:780
浙江容错服务器厂家云空间 浏览:194
linuxpython3idle 浏览:739
程序员成就感从哪来 浏览:545
游资抄底源码公式 浏览:802
用VF命令 浏览:948
解压速度14m 浏览:329
php获取httpheader 浏览:297
什么软件可以修改pdf文件 浏览:867
命令行截图软件 浏览:734
程序员加班多 浏览:123
android设置view的背景 浏览:684
u盘加密工具哪个好 浏览:571
php生成html模板引擎 浏览:26
如何设置app封杀 浏览:823
手机将照片弄成压缩包 浏览:221
卡联购卡盟官网源码 浏览:867
网页弄成pdf 浏览:223
dos的删除命令 浏览:309
区块链的加密物联网传输 浏览:572