㈠ 关于C语言预处理命令
第一句有问题。
比如
#ifndef WIN32
#endif printf("OK\n");
在这里,这个printf就不会被执行。也就是说, 一行中, 只能有一条预处理指令,
当编译的预处理阶段, 编译器识别了一条完整的预处理指令后,后面的所有东西他都不要了。
对于第二句,在函数里,我们是可以使用预处理指令的。
比如
void fun(void)
{
#ifdef WIN32
... // 对于windows系统环境的操作
#else
... // 对于windows以外的系统环境的操作
#endif /* WIN32 */
...
}
楼上的同学, 你是在哪儿本书上看的? 介绍一下呗
㈡ matlab路径优先级 :是当前文件夹的路径优先,还是setpath里面的路径优先
优先级
当前文件>当前工作路径>path路径
先找当前文件中定义的函数,或者函数句柄
然后找当前工作目录中的m文件
最后找set path中设定的路径
㈢ #pragma的常用参数
Message 参数能够在编译信息输出窗口中输出相应的信息,这对于源代码信息的控制是非常重要的。其使用方法为: #pragmamessage(消息文本)当编译器遇到这条指令时就在编译输出窗口中将消息文本打印出来。
当我们在程序中定义了许多宏来控制源代码版本的时候,我们自己有可能都会忘记有没有正确的设置这些宏,此时我们可以用这条指令在编译的时候就进行检查。假设我们希望判断自己有没有在源代码的什么地方定义了_X86这个宏可以用下面的方法 #ifdef_X86#pragmamessage(_X86macroactivated!)#endif当我们定义了_X86这个宏以后,应用程序在编译时就会在编译输出窗口里显示“_X86 macro activated! ”。我们就不会因为不记得自己定义的一些特定的宏而抓耳挠腮了。 (比较常用)
只要在头文件的最开始加入这条指令就能够保证头文件被编译一次,这条指令实际上在VC6中就已经有了,但是考虑到兼容性并没有太多的使用它。
#pragma once是编译相关,就是说这个编译系统上能用,但在其他编译系统不一定可以,也就是说移植性差,不过现在基本上已经是每个编译器都有这个定义了。
#ifndef,#define,#endif这个是C++语言相关,这是C++语言中的宏定义,通过宏定义避免文件多次编译。所以在所有支持C++语言的编译器上都是有效的,如果写的程序要跨平台,最好使用这种方式 #pragma hdrstop表示预编译头文件到此为止,后面的头文件不进行预编译。BCB可以预编译头文件以加快链接的速度,但如果所有头文件都进行预编译又可能占太多磁盘空间,所以使用这个选项排除一些头文件。
有时单元之间有依赖关系,比如单元A依赖单元B,所以单元B要先于单元A编译。你可以用#pragma startup指定编译优先级,如果使用了#pragma package(smart_init) ,BCB就会根据优先级的大小先后编译。 #pragmacomment(...)该指令将一个注释记录放入一个对象文件或可执行文件中。
常用的lib关键字,可以帮我们连入一个库文件。
每个编译程序可以用#pragma指令激活或终止该编译程序支持的一些编译功能。例如,对循环优化功能: #pragmaloop_opt(on)//激活#pragmaloop_opt(off)//终止有时,程序中会有些函数会使编译器发出你熟知而想忽略的警告,如“Parameter xxx is never used in function xxx”,可以这样: #pragmawarn—100//#100intinsert_record(REC*r){/*functionbody*/}#pragmawarn+100//#100backon函数会产生一条有唯一特征码100的警告信息,如此可暂时终止该警告。
每个编译器对#pragma的实现不同,在一个编译器中有效在别的编译器中几乎无效。可从编译器的文档中查看。 #pragmapack(n)和#pragmapop()structsample{chara;doubleb;};当sample结构没有加#pragma pack(n)的时候,sample按最大的成员那个对齐;
(所谓的对齐是指对齐数为n时,对每个成员进行对齐,既如果成员a的大小小于n则将a扩大到n个大小;
如果a的大小大于n则使用a的大小;)所以上面那个结构的大小为16字节.
当sample结构加#pragma pack(1)的时候,sizeof(sample)=9字节;无空字节。
(另注:当n大于sample结构的最大成员的大小时,n取最大成员的大小。
所以当n越大时,结构的速度越快,大小越大;反之则)
#pragma pop()就是取消#pragma pack(n)的意思了,也就是说接下来的结构不用#pragma pack(n) #pragmacomment(comment-type,[commentstring])comment-type是一个预定义的标识符,指定注释的类型,应该是compiler,exestr,lib,linker之一。
comment string是一个提供为comment-type提供附加信息的字符串。
注释类型:
1、compiler:
放置编译器的版本或者名字到一个对象文件,该选项是被linker忽略的。
2、exestr:
在以后的版本将被取消。
3、lib:
放置一个库搜索记录到对象文件中,这个类型应该是和comment string(指定你要Linker搜索的lib的名称和路径)这个库的名字放在Object文件的默认库搜索记录的后面,linker搜索这个这个库就像你在命令行输入这个命令一样。你可以在一个源文件中设置多个库记录,它们在object文件中的顺序和在源文件中的顺序一样。如果默认库和附加库的次序是需要区别的,使用Z编译开关是防止默认库放到object模块。
4、linker:
指定一个连接选项,这样就不用在命令行输入或者在开发环境中设置了。
只有下面的linker选项能被传给Linker. /DEFAULTLIB,/EXPORT,/INCLUDE,/MANIFESTDEPENDENCY,/MERGE,/SECTION(1) /DEFAULTLIB:library
/DEFAULTLIB 选项将一个 library 添加到 LINK 在解析引用时搜索的库列表。用 /DEFAULTLIB指定的库在命令行上指定的库之后和 .obj 文件中指定的默认库之前被搜索。忽略所有默认库 (/NODEFAULTLIB) 选项重写 /DEFAULTLIB:library。如果在两者中指定了相同的 library 名称,忽略库 (/NODEFAULTLIB:library) 选项将重写 /DEFAULTLIB:library。
(2)/EXPORT:entryname[,@ordinal[,NONAME]][,DATA]
使用该选项,可以从程序导出函数,以便其他程序可以调用该函数。也可以导出数据。通常在 DLL 中定义导出。entryname是调用程序要使用的函数或数据项的名称。ordinal 在导出表中指定范围在 1 至 65,535 的索引;如果没有指定 ordinal,则 LINK 将分配一个。NONAME关键字只将函数导出为序号,没有 entryname。
DATA 关键字指定导出项为数据项。客户程序中的数据项必须用 extern __declspec(dllimport)来声明。
有三种导出定义的方法,按照建议的使用顺序依次为:
源代码中的 __declspec(dllexport).def 文件中的 EXPORTS 语句LINK 命令中的 /EXPORT 规范所有这三种方法可以用在同一个程序中。LINK 在生成包含导出的程序时还创建导入库,除非生成中使用了 .exp 文件。
LINK 使用标识符的修饰形式。编译器在创建 .obj 文件时修饰标识符。如果 entryname以其未修饰的形式指定给链接器(与其在源代码中一样),则 LINK 将试图匹配该名称。如果无法找到唯一的匹配名称,则 LINK 发出错误信息。当需要将标识符指定给链接器时,请使用 Dumpbin 工具获取该标识符的修饰名形式。
(3)/INCLUDE:symbol
/INCLUDE 选项通知链接器将指定的符号添加到符号表。
若要指定多个符号,请在符号名称之间键入逗号 (,)、分号 (;) 或空格。在命令行上,对每个符号指定一次 /INCLUDE:symbol。
链接器通过将包含符号定义的对象添加到程序来解析 symbol。该功能对于添包含不会链接到程序的库对象非常有用。用该选项指定符号将通过 /OPT:REF 重写该符号的移除。
我们经常用到的是#pragma comment(lib,*.lib)这类的。#pragma comment(lib,Ws2_32.lib)表示链接Ws2_32.lib这个库。 和在工程设置里写上链入Ws2_32.lib的效果一样,不过这种方法写的 程序别人在使用你的代码的时候就不用再设置工程settings了 介绍
用#pragma data_seg建立一个新的数据段并定义共享数据,其具体格式为: #pragmadata_seg(shareddata)HWNDsharedwnd=NULL;//共享数据#pragmadata_seg()-----------------------------------------------------------------
1,#pragma data_seg()一般用于DLL中。也就是说,在DLL中定义一个共享的有名字的数据段。最关键的是:这个数据段中的全局变量可以被多个进程共享,否则多个进程之间无法共享DLL中的全局变量。
2,共享数据必须初始化,否则微软编译器会把没有初始化的数据放到.BSS段中,从而导致多个进程之间的共享行为失败。例如, #pragmadata_seg(MyData)intg_Value;//.#pragmadata_seg()//DLL提供两个接口函数:intGetValue(){returng_Value;}voidSetValue(intn){g_Value=n;}然后启动两个进程A和B,A和B都调用了这个DLL,假如A调用了SetValue(5); B接着调用int m = GetValue(); 那么m的值不一定是5,而是一个未定义的值。因为DLL中的全局数据对于每一个调用它的进程而言,是私有的,不能共享的。假如你对g_Value进行了初始化,那么g_Value就一定会被放进MyData段中。换句话说,如果A调用了SetValue(5); B接着调用int m = GetValue(); 那么m的值就一定是5,这就实现了跨进程之间的数据通信。 #pragma region是Visual C++中特有的预处理指令。它可以让你折叠特定的代码块,从而使界面更加清洁,便于编辑其他代码。折叠后的代码块不会影响编译。你也可以随时展开代码块以进行编辑等操作。
格式: #pragmaregionname#pragmaendregioncomment使用示例如下: #pragmaregionVariablesHWNDhWnd;constsize_tMax_Length=20;//othervariables#.如上边所示,需要折叠的代码必须包含在#pragma region和#pragma endregion之间。#pragma region和#pragma endregion之后可以添加一些用来注释的文字。当你折叠代码块后,这些文字会显示在折叠的位置。
折叠代码块的方法:如同Visual C++中折叠函数、类、命名空间,当代码被包含在如上所述的指令之间后,#pragma region这一行的左边会出现一个“-”号,单击以折叠内容,同时“-”号会变成“+”号,再次单击可以展开代码块。
此预编译指令在Visual Studio 2005及以上版本可以使用。但是在Visual Studio 2005中,当#pragma region之后包含类似“1st”这类的文字,会导致“error C2059: syntax error : 'bad suffix on number'”的编译错误。避免使用数字或者将数字与字母分离可以解决这个问题。
㈣ 如何找到windows加载dll时,搜索的路径顺序
dll查找的路径顺序如下:
a. 应用程序所在目录;
b. 系统目录。 GetSystemDirectory 返回的目录,通常是系统盘\Windows\System32;
c. 16位系统目录。该项只是为了向前兼容的处理,可以不考虑;
d. Windows目录。 GetWindowsDirectory 返回的目录,通常是系统盘 \Windows ;
e. 当前目录。GetCurrentDirectory返回的目录;
f. 环境变量PATH中所有目录。
如果"安全DLL查找模式"被禁用,查找顺序如下:
a. 应用程序所在目录;
b. 当前目录。GetCurrentDirectory返回的目录;
c. 系统目录。 GetSystemDirectory 返回的目录,通常是系统盘\Windows\System32;
d. 16位系统目录。该项只是为了向前兼容的处理,可以不考虑;
e. Windows目录。 GetWindowsDirectory 返回的目录,通常是系统盘 \Windows ;
f. 环境变量PATH中所有目录。
㈤ 在一个C++程序文件中,若要包含另外一个头文件或程序文件,则应该使用什么标识符开始的预处理命令”
#include <header.h>
#include "header.h"
两种区别主要在于搜索路径不同,或者优先级不同,前者从系统或编译器提供的头文件中搜索,后者优先源文件目录或项目目录。
㈥ C语言中,运算符的优先级和结合方向与编译工具有关吗在不同编译工具下是如何处理的呢
首先优先级和结合性与编译器本身无关,只和标准有关
其次,你这里的问题和优先级以及结合性无关,这是求值顺序问题,而C语言中没有规定求值顺序,故实际上是无解的
http://bbs.csdn.net/topics/370153775
㈦ 写c语言时候头文件后面用<>和用" "有什么区别吗
一般地说,用<>括起来的是标准c语言函数,是编译系统默认路径下可找到的定义文件。
如果你需要编写自己用的头文件或其他文件需要引用时,普通不会存放在c语言编译环境的目录中,这时需要在编译选项中添加搜索路径,并在程序中用""括起来文件名,这样编译程序除了在标准系统目录中搜索外,还到你指定的路径中搜索。
由此,你用<>能编译通过的地方可以全都换成""也没有问题。
㈧ 预处理指令#pragma db code是什么意思
一、作用是设定编译器的状态或者是指示编译器完成一些特定的动作。#pragma指令对每个编译器给出了一个方法,在保持与C和 C++语言完全兼容的情况下,给出主机或操作系统专有的特征。依据定义,编译指示是机器或操作系统专有的,且对于每个编译器都是不同的。
二、常用的pragma指令的详细解释。
1.#pragma once。保证所在文件只会被包含一次,它是基于磁盘文件的,而#ifndef则是基于宏的。
2.#pragma warning。允许有选择性的修改编译器的警告消息的行为。有如下用法:
#pragma warning(disable:4507 34; once:4385; error:164) 等价于:
#pragma warning(disable:4507 34) // 不显示4507和34号警告信息
#pragma warning(once:4385) // 4385号警告信息仅报告一次
#pragma warning(error:164) // 把164号警告信息作为一个错误
#pragma warning(default:176) // 重置编译器的176号警告行为到默认状态
同时这个pragma warning也支持如下格式,其中n代表一个警告等级(1---4):
#pragma warning(push) // 保存所有警告信息的现有的警告状态
#pragma warning(push,n) // 保存所有警告信息的现有的警告状态,并设置全局报警级别为n
#pragma warning(pop) // 恢丛 鹊木 孀刺 趐ush和pop之间所做的一切改动将取消
例如:
#pragma warning(push)
#pragma warning(disable:4705)
#pragma warning(disable:4706)
#pragma warning(disable:4707)
#pragma warning(pop)
在这段代码后,恢复所有的警告信息(包括4705,4706和4707)。
3.#pragma hdrstop。表示预编译头文件到此为止,后面的头文件不进行预编译。BCB可以预编译头文件以 加快链接的速度,但如果所有头文件都进行预编译又可能占太多磁盘空间,所以使用这个选项排除一些头文 件。
4.#pragma message。在标准输出设备中输出指定文本信息而不结束程序运行。用法如下:
#pragma message("消息文本")。当编译器遇到这条指令时就在编译输出窗口中将“消息文本”打印出来。
5.#pragma data_seg。一般用于DLL中,它能够设置程序中的初始化变量在obj文件中所在的数据段。如果未指定参数,初始化变量将放置在默认数据段.data中,有如下用法:
#pragma data_seg("Shared") // 定义了数据段"Shared",其中有两个变量a和b
int a = 0; // 存储在数据段"Shared"中
int b; // 存储在数据段".bss"中,因为没有初始化
#pragma data_seg() // 表示数据段"Shared"结束,该行代码为可选的
对变量进行专门的初始化是很重要的,否则编译器将把它们放在普通的未初始化数据段中而不是放在shared中。如上述的变量b其实是放在了未初始化数据段.bss中。
#pragma data_seg("Shared")
int j = 0; // 存储在数据段"Shared"中
#pragma data_seg(push, stack1, "Shared2") //定义数据段Shared2,并将该记录赋予别名stack1,然后放入内部编译器栈中
int l = 0; // 存储在数据段"Shared2"中
#pragma data_seg(pop, stack1) // 从内部编译器栈中弹出记录,直到弹出stack1,如果没有stack1,则不做任何操作
int m = 0; // 存储在数据段"Shared"中,如果没有上述pop段,则该变量将储在数据段"Shared2"中
6.#pragma code_seg。它能够设置程序中的函数在obj文件中所在的代码段。如果未指定参数,函数将放置在默认代码段.text中,有如下用法:
void func1() { // 默认存储在代码段.text中
}
#pragma code_seg(".my_data1")
void func2() { // 存储在代码段.my_data1中
}
#pragma code_seg(push, r1, ".my_data2")
void func3() { // 存储在代码段.my_data2中
}
#pragma code_seg(pop, r1)
void func4() { // 存储在代码段.my_data1中
}
7.#pragma pack。用来改变编译器的字节对齐方式。常规用法为:
#pragma pack(n) //将编译器的字节对齐方式设为n,n的取值一般为1、2、4、8、16,一般默认为8
#pragma pack(show) //以警告信息的方式将当前的字节对齐方式输出
#pragma pack(push) //将当前的字节对齐方式放入到内部编译器栈中
#pragma pack(push,4) //将字节对齐方式4放入到内部编译器栈中,并将当前的内存对齐方式设置为4
#pragma pack(pop) //将内部编译器栈顶的记录弹出,并将其作为当前的内存对齐方式
#pragma pack(pop,4) //将内部编译器栈顶的记录弹出,并将4作为当前的内存对齐方式
#pragma pack(pop,r1) //r1为自定义的标识符,将内部编译器中的记录弹出,直到弹出r1,并将r1的值作为当前的内存对齐方式;如果r1不存在,当不做任何操作
8.#pragma comment。将一个注释记录放置到对象文件或可执行文件中。
其格式为:#pragma comment( comment-type [,"commentstring"] )。其中,comment-type是一个预定义的标识符,指定注释的类型,应该是compiler,exestr,lib,linker,user之一。
compiler:放置编译器的版本或者名字到一个对象文件,该选项是被linker忽略的。
exestr:在以后的版本将被取消。
lib:放置一个库搜索记录到对象文件中,这个类型应该与commentstring(指定Linker要搜索的lib的名称和路径)所指定的库类型一致。在对象文件中,库的名字跟在默认搜索记录后面;linker搜索这个这个库就像你在命令行输入这个命令一样。你可以在一个源文件中设置多个库搜索记录,它们在obj文件中出现的顺序与在源文件中出现的顺序一样。
如果默认库和附加库的次序是需要区别的,使用/Zl编译开关可防止默认库放到object模块中。
linker:指定一个连接选项,这样就不用在命令行输入或者在开发环境中设置了。只有下面的linker选项能被传给Linker:
/DEFAULTLIB
/EXPORT
/INCLUDE
/MANIFESTDEPENDENCY
/MERGE
/SECTION
(1)/DEFAULTLIB:library
/DEFAULTLIB选项将一个library添加到LINK在解析引用时搜索的库列表。用/DEFAULTLIB指定的库在命令行上指定的库之后和obj文件中指定的默认库之前被搜索。
忽略所有默认库(/NODEFAULTLIB)选项重写/DEFAULTLIB:library。如果在两者中指定了相同的library名称,忽略库(/NODEFAULTLIB:library)选项将重写/DEFAULTLIB:library。
(2)/EXPORT:entryname[,@ordinal[,NONAME]][,DATA]
使用该选项,可以从程序导出函数以便其他程序可以调用该函数,也可以导出数据。通常在DLL中定义导出。
entryname是调用程序要使用的函数或数据项的名称。ordinal为导出表的索引,取值范围在1至65535;如果没有指定ordinal,则LINK将分配一个。NONAME关键字只将函数导出为序号,没有entryname。DATA 关键字指定导出项为数据项。客户程序中的数据项必须用extern __declspec(dllimport)来声明。
有三种导出定义的方法,按照建议的使用顺序依次为:
源代码中的__declspec(dllexport)
.def文件中的EXPORTS语句
LINK命令中的/EXPORT规范
所有这三种方法可以用在同一个程序中。LINK在生成包含导出的程序时还要创建导入库,除非在生成过程中使用了.exp 文件。
LINK使用标识符的修饰形式。编译器在创建obj文件时修饰标识符。如果entryname以其未修饰的形式指定给链接器(与其在源代码中一样),则LINK将试图匹配该名称。如果无法找到唯一的匹配名称,则LINK发出错误信息。当需要将标识符指定给链接器时,请使用Dumpbin工具获取该标识符的修饰名形式。
(3)/INCLUDE:symbol
/INCLUDE选项通知链接器将指定的符号添加到符号表。若要指定多个符号,请在符号名称之间键入逗号(,)、分号(;)或空格。在命令行上,对每个符号需指定一次/INCLUDE:symbol。
链接器通过将包含符号定义的对象添加到程序来解析symbol。该功能对于添加不会链接到程序的库对象非常有用。
用该选项所指定的符号将覆盖通过/OPT:REF对该符号进行的移除操作。
(4)/MANIFESTDEPENDENCY:manifest_dependency
/MANIFESTDEPENDENCY允许你指定位于manifest文件的段的属性。/MANIFESTDEPENDENCY信息可以通过下面两种方式传递给LINK:
直接在命令行运行/MANIFESTDEPENDENCY
通过#pragma comment
(5)/MERGE:from=to
/MERGE选项将第一个段(from)与第二个段(to)进行联合,并将联合后的段命名为to的名称。
如果第二个段不存在,LINK将段(from)重命名为to的名称。
/MERGE选项对于创建VxDs和重写编译器生成的段名非常有用。
(6)/SECTION:name,[[!]{DEKPRSW}][,ALIGN=#]
/SECTION选项用来改变段的属性,当指定段所在的obj文件编译的时候重写段的属性集。
可移植的可执行文件(PE)中的段(section)与新可执行文件(NE)中的节区(segment)或资源大致相同。
段(section)中包含代码或数据。与节区(segment)不同的是,段(section)是没有大小限制的连续内存块。有些段中的代码或数据是你的程序直接定义和使用的,而有些数据段是链接器和库管理器(lib.exe)创建的,并且包含了对操作系统来说很重要的信息。
/SECTION选项中的name是大小写敏感的。
不要使用以下名称,因为它们与标准名称会冲突,例如,.sdata是RISC平台使用的。
.arch
.bss
.data
.edata
.idata
.pdata
.rdata
.reloc
.rsrc
.sbss
.sdata
.srdata
.text
.xdata
为段指定一个或多个属性。属性不是大小写敏感的。对于一个段,你必须将希望它具有的属性都进行指定;如果某个属性未指定,则认为是不具备这个属性。如果你未指定R,W或E,则已存在的读,写或可执行状态将不发生改变。
要对某个属性取否定意义,只需要在属性前加感叹号(!)。
E:可执行的
R:可读取的
W:可写的
S:对于载入该段的镜像的所有进程是共享的
D:可废弃的
K:不可缓存的
P:不可分页的
注意K和P是表示否定含义的。
PE文件中的段如果没有E,R或W属性集,则该段是无效的。
ALIGN=#选项让你为一个具体的段指定对齐值。
user:放置一个常规注释到一个对象文件中,该选项是被linker忽略的。
9.#pragma section。创建一个段。
其格式为:#pragma section( "section-name" [, attributes] )
section-name是必选项,用于指定段的名字。该名字不能与标准段的名字想冲突。可用/SECTION查看标准段的名称列表。
attributes是可选项,用于指定段的属性。可用属性如下,多个属性间用逗号(,)隔开:
read:可读取的
write:可写的
execute:可执行的
shared:对于载入该段的镜像的所有进程是共享的
nopage:不可分页的,主要用于Win32的设备驱动程序中
nocache:不可缓存的,主要用于Win32的设备驱动程序中
discard:可废弃的,主要用于Win32的设备驱动程序中
remove:非内存常驻的,仅用于虚拟设备驱动(VxD)中
如果未指定属性,默认属性为read和write。
在创建了段之后,还要使用__declspec(allocate)将代码或数据放入段中。
例如:
//pragma_section.cpp
#pragma section("mysec",read,write)
int j = 0;
__declspec(allocate("mysec"))
int i = 0;
int main(){}
该例中, 创建了段"mysec",设置了read,write属性。但是j没有放入到该段中,而是放入了默认的数据段中,因为它没有使用__declspec(allocate)进行声明;而i放入了该段中,因为使用__declspec(allocate)进行了声明。
10.#pragma push_macro与#pragma pop_macro。前者将指定的宏压入栈中,相当于暂时存储,以备以后使用;后者将栈顶的宏出栈,弹出的宏将覆盖当前名称相同的宏。例如:
#include
#define X 1
#define Y 2
int main() {
printf("%d",X);
printf("\n%d",Y);
#define Y 3 // C4005
#pragma push_macro("Y")
#pragma push_macro("X")
printf("\n%d",X);
#define X 2 // C4005
printf("\n%d",X);
#pragma pop_macro("X")
printf("\n%d",X);
#pragma pop_macro("Y")
printf("\n%d",Y);
}
输出结果:
1
2
1
2
1
3
㈨ 如何使用CMake进行交叉编译
cmake交叉编译配置
很多时候,我们在开发的时候是面对嵌入式平台,因此由于资源的限制需要用到相关的交叉编译。即在你host宿主机上要生成target目标机的程序。里面牵扯到相关头文件的切换和编译器的选择以及环境变量的改变等,我今天仅仅简单介绍下相关CMake在面对交叉编译的时候,需要做的一些准备工作。
CMake给交叉编译预留了一个很好的变量CMAKE_TOOLCHAIN_FILE,它定义了一个文件的路径,这个文件即toolChain,里面set了一系列你需要改变的变量和属性,包括C_COMPILER,CXX_COMPILER,如果用Qt的话需要更改QT_QMAKE_EXECUTABLE以及如果用BOOST的话需要更改的BOOST_ROOT(具体查看相关Findxxx.cmake里面指定的路径)。CMake为了不让用户每次交叉编译都要重新输入这些命令,因此它带来toolChain机制,简而言之就是一个cmake脚本,内嵌了你需要改变以及需要set的所有交叉环境的设置。
toolChain脚本中设置的几个重要变量
1.CMAKE_SYSTEM_NAME:
即你目标机target所在的操作系统名称,比如ARM或者Linux你就需要写"Linux",如果Windows平台你就写"Windows",如果你的嵌入式平台没有相关OS你即需要写成"Generic",只有当CMAKE_SYSTEM_NAME这个变量被设置了,CMake才认为此时正在交叉编译,它会额外设置一个变量CMAKE_CROSSCOMPILING为TRUE.
2. CMAKE_C_COMPILER:
顾名思义,即C语言编译器,这里可以将变量设置成完整路径或者文件名,设置成完整路径有一个好处就是CMake会去这个路径下去寻找编译相关的其他工具比如linker,binutils等,如果你写的文件名带有arm-elf等等前缀,CMake会识别到并且去寻找相关的交叉编译器。
3. CMAKE_CXX_COMPILER:
同上,此时代表的是C++编译器。
4. CMAKE_FIND_ROOT_PATH:
指定了一个或者多个优先于其他搜索路径的搜索路径。比如你设置了/opt/arm/,所有的Find_xxx.cmake都会优先根据这个路径下的/usr/lib,/lib等进行查找,然后才会去你自己的/usr/lib和/lib进行查找,如果你有一些库是不被包含在/opt/arm里面的,你也可以显示指定多个值给CMAKE_FIND_ROOT_PATH,比如
set(CMAKE_FIND_ROOT_PATH /opt/arm /opt/inst)
该变量能够有效地重新定位在给定位置下进行搜索的根路径。该变量默认为空。当使用交叉编译时,该变量十分有用:用该变量指向目标环境的根目录,然后CMake将会在那里查找。
5. CMAKE_FIND_ROOT_PATH_MODE_PROGRAM:
对FIND_PROGRAM()起作用,有三种取值,NEVER,ONLY,BOTH,第一个表示不在你CMAKE_FIND_ROOT_PATH下进行查找,第二个表示只在这个路径下查找,第三个表示先查找这个路径,再查找全局路径,对于这个变量来说,一般都是调用宿主机的程序,所以一般都设置成NEVER
6. CMAKE_FIND_ROOT_PATH_MODE_LIBRARY:
对FIND_LIBRARY()起作用,表示在链接的时候的库的相关选项,因此这里需要设置成ONLY来保证我们的库是在交叉环境中找的.
7. CMAKE_FIND_ROOT_PATH_MODE_INCLUDE:
对FIND_PATH()和FIND_FILE()起作用,一般来说也是ONLY,如果你想改变,一般也是在相关的FIND命令中增加option来改变局部设置,有NO_CMAKE_FIND_ROOT_PATH,ONLY_CMAKE_FIND_ROOT_PATH,BOTH_CMAKE_FIND_ROOT_PATH
8. BOOST_ROOT:
对于需要boost库的用户来说,相关的boost库路径配置也需要设置,因此这里的路径即ARM下的boost路径,里面有include和lib。
9. QT_QMAKE_EXECUTABLE:
对于Qt用户来说,需要更改相关的qmake命令切换成嵌入式版本,因此这里需要指定成相应的qmake路径(指定到qmake本身)
toolChain demo
# this is required
SET(CMAKE_SYSTEM_NAME Linux)
# specify the cross compiler
SET(CMAKE_C_COMPILER /opt/arm/usr/bin/ppc_74xx-gcc)
SET(CMAKE_CXX_COMPILER /opt/arm/usr/bin/ppc_74xx-g++)
# where is the target environment
SET(CMAKE_FIND_ROOT_PATH /opt/arm/ppc_74xx /home/rickk/arm_inst)
# search for programs in the build host directories (not necessary)
SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
# for libraries and headers in the target directories
SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
# configure Boost and Qt
SET(QT_QMAKE_EXECUTABLE /opt/qt-embedded/qmake)
SET(BOOST_ROOT /opt/boost_arm)
这样就完成了相关toolChain的编写,之后,你可以灵活的选择到底采用宿主机版本还是开发机版本,之间的区别仅仅是一条-DCMAKE_TOOLCHAIN_FILE=./toolChain.cmake,更爽的是,如果你有很多程序需要做转移,但目标平台是同一个,你仅仅需要写一份toolChain放在一个地方,就可以给所有工程使用。
㈩ 如何更改动态链接库的路径优先级
你的运行目录和dll库不在一个目录肯定会找不到的。
QCoreApplication::addLibraryPath("./lib");把这句话加到main.cpp里面。