导航:首页 > 源码编译 > 与离散化算法相似的功能

与离散化算法相似的功能

发布时间:2022-05-11 09:42:59

Ⅰ 模拟控制器的离散化方法有哪些各有什么特点

数字控制器的离散化方法有:将连续的被控对象离散化,将数字控制器等效为一个连续环节。

特点:等效的离散系统数学模型,然后在离散系统的范畴内分析整个闭环系统;在传统的模拟控制系统中,控制器的控制规律或控制作用是由仪表或电子装置的硬件电路完成的,而在计算机控制系统中,除了计算机装置以外,更主要的体现在软件算法上,即数字控制器的设计上。

离散化方法

(discretizationmethod)一种求解连续介质力学问题的基本手段。它是用计算机求解连续介质力学问题的。连续介质力学规律一般用微分方程或积分方程组来描述,离散化方法将它们化归为有限个参量的代数方程组来近似原问题。通常的有限差分法、有限单元法、加权余量法都是行之有效的离散化方法。

Ⅱ 数学建模的十类算法

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)
4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
7.网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8.一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)
9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
10.图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)

Ⅲ 问生活中能想到那些离散化的例子(关于计算机导论的问题)

提问
网络知道
关于离散化的一些问题
1.离散化的定义,概念2.离散化的应用3.离散化的适用范围4.举例 最好是给我一份初学者的ppt 或者 pdf如果是电子书就更好了
展开

1条回答

匿名用户
2013-09-26

"如果说今年这时候OIBH问得最多的问题是二分图,那么去年这时候问得最多的算是离散化了。对于“什么是离散化”,搜索帖子你会发现有各种说法,比如“排序后处理”、“对坐标的近似处理”等等。哪个是对的呢?哪个都对。关键在于,这需要一些例子和不少的讲解才能完全解释清楚。
离散化是程序设计中一个非常常用的技巧,它可以有效的降低时间复杂度。其基本思想就是在众多可能的情况中“只考虑我需要用的值”。下面我将用三个例子说明,如何运用离散化改进一个低效的,甚至根本不可能实现的算法。"上面是网上的一些说法,我自己更通俗的理解是这样的..离散就是一种映射,在条件允许的情况下把大的范围缩合成小的,或把无序的根据题意变成有序,(离散嘛~~)那样问题就好解决的多...至于应用.~我也刚学,,不知道很多,,反正矩形覆盖肯定是最基础最经典的.使用范围的话.!我显然不知道,,题目做多了就知道了.举例的话,,我显然更不知道,电子书,我显然也没有,网上怎么都没找到,话说我要是有的话您就不可能没有.然后,最后,,我贴上我VIJOS上的矩形覆盖的程序,,- =如果说今年这时候OIBH问得最多的问题是二分图,那么去年这时候问得最多的算是离散化了。对于“什么是离散化”,搜索帖子你会发现有各种说法,比如“排序后处理”、“对坐标的近似处理”等等。哪个是对的呢?哪个都对。关键在于,这需要一些例子和不少的讲解才能完全解释清楚。
离散化是程序设计中一个非常常用的技巧,它可以有效的降低时间复杂度。其基本思想就是在众多可能的情况中“只考虑我需要用的值”。下面我将用三个例子说明,如何运用离散化改进一个低效的,甚至根本不可能实现的算法。
如果说今年这时候OIBH问得最多的问题是二分图,那么去年这时候问得最多的算是离散化了。对于“什么是离散化”,搜索帖子你会发现有各种说法,比如“排序后处理”、“对坐标的近似处理”等等。哪个是对的呢?哪个都对。关键在于,这需要一些例子和不少的讲解才能完全解释清楚。

Ⅳ 数据挖掘的常用算法有哪几类

有十大经典算法

下面是网站给出的答案:
1. C4.5
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2) 在树构造过程中进行剪枝;
3) 能够完成对连续属性的离散化处理;
4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

2. The k-means algorithm 即K-Means算法
k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。

3. Support vector machines
支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假 定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。

4. The Apriori algorithm
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

5. 最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

6. PageRank
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

7. AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。

8. kNN: k-nearest neighbor classification
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

9. Naive Bayes
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以 及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

10. CART: 分类与回归树
CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。

Ⅳ 离散化的举例解释

如果说OIBH问得最多的问题是二分图,那么“现在”问得最多的算是离散化了。对于“什么是离散化”,搜索帖子你会发现有各种说法,比如“排序后处理”、“对坐标的近似处理”等等。哪个是对的呢?哪个都对。关键在于,这需要一些例子和不少的讲解才能完全解释清楚 。
离散化是程序设计中一个非常常用的技巧,它可以有效的降低时间和空间复杂度。其基本思想就是在众多可能的情况中“只考虑我需要用的值”。下面我将用三个例子说明,如何运用离散化改进一个低效的,甚至根本不可能实现的算法。
《算法艺术与信息学竞赛》中的计算几何部分,黄亮举了一个经典的例子,我认为很适合用来介绍离散化思想。这个问题是UVA10173题目意思很简单,给定平面上n个点的坐标,求能够覆盖所有这些点的最小矩形面积。这个问题难就难在,这个矩形可以倾斜放置(边不必平行于坐标轴)。
这里的倾斜放置很不好处理,因为我们不知道这个矩形最终会倾斜多少度。假设我们知道这个矩形的倾角是α,那么答案就很简单了:矩形面积最小时四条边一定都挨着某个点。也就是说,四条边的斜率已经都知道了的话,只需要让这些边从外面不断逼近这个点集直到碰到了某个点。你不必知道这个具体应该怎么实现,只需要理解这可以通过某种方法计算出来,毕竟我们的重点在下面的过程。
我们的算法很显然了:枚举矩形的倾角,对于每一个倾角,我们都能计算出最小的矩形面积,最后取一个最小值。
这个算法是否是正确的呢?我们不能说它是否正确,因为它根本不可能实现。矩形的倾角是一个实数,它有无数种可能,你永远不可能枚举每一种情况。我们说,矩形的倾角是一个“连续的”变量,它是我们无法枚举这个倾角的根本原因。我们需要一种方法,把这个“连续的”变量变成一个一个的值,变成一个“离散的”变量。这个过程也就是所谓的离散化。
我们可以证明,最小面积的矩形不但要求四条边上都有一个点,而且还要求至少一条边上有两个或两个以上的点。试想,如果每条边上都只有一个点,则我们总可以把这个矩形旋转一点使得这个矩形变“松”,从而有余地得到更小的矩形。于是我们发现,矩形的某条边的斜率必然与某两点的连线相同。如果我们计算出了所有过两点的直线的倾角,那么α的取值只有可能是这些倾角或它减去90度后的角(直线按“”方向倾斜时)这么C(n,2)种。我们说,这个“倾角”已经被我们“离散化”了。虽然这个算法仍然有优化的余地,但此时我们已经达到了本文开头所说的目的。
对于某些坐标虽然已经是整数(已经是离散的了)但范围极大的问题,我们也可以用离散化的思想缩小这个规模。搞模拟赛Vijos似乎火了一把,我就拿两道Vijos的题开刀。
VOJ1056 永远是离散化的经典问题。大意是给定平面上的n个矩形(坐标为整数,矩形与矩形之间可能有重叠的部分),求其覆盖的总面积。平常的想法就是开一个与二维坐标规模相当的二维Boolean数组模拟矩形的“覆盖”(把矩形所在的位置填上True)。可惜这个想法在这里有些问题,因为这个题目中坐标范围相当大(坐标范围为-10^8到10^8之间的整数)。但我们发现,矩形的数量n<=100远远小于坐标范围。每个矩形会在横纵坐标上各“使用”两个值,100个矩形的坐标也不过用了-10^8到10^8之间的200个值。也就是说,实际有用的值其实只有这么几个。这些值将作为新的坐标值重新划分整个平面,省去中间的若干坐标值没有影响。我们可以将坐标范围“离散化”到1到200之间的数,于是一个200*200的二维数组就足够了。实现方法正如本文开头所说的“排序后处理”。对横坐标(或纵坐标)进行一次排序并映射为1到2n的整数,同时记录新坐标的每两个相邻坐标之间在离散化前实际的距离是多少。这道题同样有优化的余地。
最后简单讲一下计算几何以外的一个运用实例(实质仍然是坐标的离散)。VOJ1238 中,标程开了一个与时间范围一样大的数组来储存时间段的位置。这种方法在空间上来看十分危险。一旦时间取值范围再大一点,盲目的空间开销将导致Memory Limit Exceeded。我们完全可以采用离散化避免这种情况。我们对所有给出的时间坐标进行一次排序,然后同样用时间段的开始点和结束点来计算每个时刻的游戏数,只是一次性加的经验值数将乘以排序后这两个相邻时间点的实际差。这样,一个1..n的数组就足够了。
离散化的应用相当广泛,以后你会看到还有很多其它的用途。

Ⅵ 什么叫做离散化

Microsoft SQL Server 2005 Analysis Services (SSAS) 中创建数据挖掘模型时所用的有些算法需要特定的内容类型才能正确运行。例如,有些算法(如 Microsoft Naive Bayes 算法)不能使用连续列作为输入,即不能预测连续值。另外,有些列可能会因包含的值太多而导致算法不易标识数据中据以创建模型的相关模式。

在此类情况下,可以将列中的数据离散化,以便可以使用算法来生成挖掘模型。离散化是将一组连续的数据的值放入存储桶的过程,以便得到可能状态的离散数目。存储桶本身是作为有序且离散的值处理的。数值列和字符串行都可以进行离散化。

离散化数据时,可以使用多种方法。每种方法都能使用以下示例代码中的公式,自动计算要生成的存储桶的数目:

Number of Buckets = sqrt(n)

在上述示例代码中,n 是列中数据非重复值的数目。如果不希望由 Analysis Services 计算存储桶数目,则可使用 DiscretizationBuckets 属性来手动指定存储桶的数目。

Ⅶ 常用的系统建模方法的适用范围和局限性

常用的系统建模方法的适用范围和局限性?系统建模方法

2.1系统抽象与数学描述

2.1.1 实际系统的抽象

本质上讲,系统数学模型是从系统概念出发的关于现实世界的一小部分或几个方面的抽象的“映像”。

为此,系统数学模型的建立需要建立如下抽象:输入、输出、状态变量及其间的函数关系。这种抽象过程称为模型构造。抽象中,必须联系真实系统与建模目标,其中描述变量起着很重要的作用,它可观测,或不可观测。

从外部对系统施加影响或干扰的可观测变量称为输入变量。 系统对输入变量的响应结果称为输出变量。

输入、输出变量对的集合,表征着真实系统的“输入-输出”性状(关系)。

综上述,真实系统可视为产生一定性状数据的信息源,而模型则是产生与真实系统相同性状数据的一些规则、指令的集合,抽象在其中则起着媒介作用。系统数学建模就是将真实系统抽象成相应的数学表达式(一些规则、指令的集合)。

- 1 -

(可观测)

输入变量 (可观测) 输出变量

ωt) 黑箱

1/18页
灰箱

白箱 ω(t)、ρ(t)---输入输出变量对

真实系统建模的抽象过程

- 2 -

2.1.2 系统模型的一般描述及描述级(水平)

2.1.2.1 系统模型的一般描述:

一个系统的数学模型可以用如下七元组集合来描述:

S??T,X,?,Q,Y,?,??

其中:

T:时间基,描述系统变化的时间坐标,T为整数则称为离散时间系统,为实数则称为连续时间系统;

X:输入集,代表外部环境对系统的作用。

?:输入段集,描述某个时间间隔内的输入模式,是?X,T?的一个子集。

Q:内部状态集,描述系统内部状态量,是系统内部结构建模的核心。 ?:状态转移函数,定义系统内部状态是如何变化的,是一个映射。 Y:输出集,系统通过它作用于环境。

?:输出函数,是一个映射,给出了一个输出段集。

2.1.2.2 系统模型描述级(水平):

按照系统论的观点,实际系统可在某种级(水平)上被分解,因此系统的数学模型可以有不同的描述级(水平):

? 性状描述级

性状描述级或称为行为描述级(行为水平)。在此级上描述系统是将

2/18页
系统堪称黑箱,并施加输入信号,同时测得输出响应,结果是得出一个输入-输出对:(ω,ρ) 及其关系Rs={(ω,ρ):Ω,ω,ρ}。 - 3 -

因此,系统的性状级描述只给出输入-输出观测结果。其模型为五元组集合结构:

S=(T,X,Ω,Y, R)

当ω,ρ满足ρ =f(ω)函数关系时,其集合结构变为: S=(T,X,Ω,Y, F)

黑箱

? 状态描述级

在状态结构级(状态结构水平)上,系统模型不仅能反映输入-输出关系,而且应能反映出系统内部状态,以及状态与输入、输出间的关系。即不仅定义了系统的输入与输出,而且定义了系统内部的状态集及状态转移函数

系统的数学模型对于动态结构可用七元组集合来描述:

S=(T,X,Ω,Q,Y,δ,λ)

对于静态结构有:

S=(X,Q,Y,λ)

白箱

? 复合结构级

系统一般由若干个分系统组成,对每个分系统都给出行为级描述,被视为系统的一个“部件”。这些部件有其本身的输入、输出变量,以及部件间的连接关系和接口。于是,可以建立起系统在复合结构级(分解结构

3/18页
级)上的数学模型。

这种复合结构级描述是复杂系统和大系统建模的基础。

应该强调:

? 系统分解为复合结构是无止境的,即每个分系统还会有自己的复合结构;

? 一个有意义的复合结构描述只能给出唯一的状态结构描述, - 4 -

而一个有意义的状态结构描述本身只有唯一的性状(行为)描述;

? 系统上述概念必须允许分解停止,又允许进一步分解,既包含递归可分解性。

灰箱

- 5 -

2.2 相似概念简介

2.2.1 相似概念及含义

仿真的理论依据:相似论。

自然界中广泛存在着“相似”概念,最普遍的是:

几何相似:最简单、最直观,如多变形、三角形相似;

现象相似:几何相似的拓展,如物理量之间存在的比例关系。 采用相似技术来建立实际系统的相似模型,这是相似理论在系统仿真中基础作用的根本体现。

2.2.2 相似分类

绝对相似:两个系统(如系统原型与模型)全部几何尺寸和其他相应参数在时空域上产生的全部变化(或全部过程)都是相似的;

4/18页
完全相似:两个系统在某一相应方面的过程上相似,如发电机的电流电压问题,模型与原型在电磁现象方面是完全相似即可,而无需考虑热工和机械方面的相似;

不完全相似(局部相似):仅保证研究部分的系统相似,而非研究和不要求部分的过程可能被歪曲,为研究目的所允许;

近似相似:某些简化假设下的现象相似,数学建模要保证有效性。

不同领域中的相似有各自的特点,对领域的认识水平也不一样: 环境相似(几何相似、参量比例相似等):结构尺寸按比例缩小得到的模型-缩比模型,如风洞、水洞实验所用的模型。

离散相似:差分法、离散相似法把连续时间系统离散化为等价的离散时间系统。

性能相似(等效、动力学相似、控制响应相似等):数学描述相同或者频率特性相同,用于构造各类仿真的相似原则。

感觉相似(运动感觉、视觉、音响感觉等):耳、眼、鼻、舌、 - 6 -

身等感官和经验,MIL仿真把感觉相似转化为感觉信息源相似,培训仿真器、VR均是利用这种相似原则。

思维相似:逻辑思维相似和形象思维相似(比较、综合、归纳等),专家系统、人工神经元网络。

系统具有内部结构和外部行为,因此系统的相似有两个基本水平:结构水平和行为水平。

同构必具有行为等价的特性,但行为等价的两个系统并不一定具有同构关系。

5/18页

Ⅷ 数字控制器的离散化方法有哪些并比较这几种离散方法。 大学计算机控制系统

数字控制器的离散化方法有
一是将连续的被控对象离散化--等效的离散系统数学模型,然后在离散系统的范畴内分析整个闭环系统;在传统的模拟控制系统中,控制器的控制规律或控制作用是由仪表或电子装置的硬件电路完成的,而在计算机控制系统中,除了计算机装置以外,更主要的体现在软件算法上,即数字控制器的设计上。
二是将数字控制器等效为一个连续环节,然后采用连续系统的方法来分析与设计整个控制系统。相应地,在设计方法上就可以分为:模拟化设计方法和离散化设计方法。

Ⅸ 数据挖掘十大经典算法及各自优势

数据挖掘十大经典算法及各自优势

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。
1. C4.5
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;2) 在树构造过程中进行剪枝;3) 能够完成对连续属性的离散化处理;4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
2. The k-means algorithm 即K-Means算法
k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。
3. Support vector machines
支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假 定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。
4. The Apriori algorithm
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
5. 最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。
6. PageRank
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
7. AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
8. kNN: k-nearest neighbor classification
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
9. Naive Bayes
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以 及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。10. CART: 分类与回归树
CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。

以上是小编为大家分享的关于数据挖掘十大经典算法及各自优势的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅹ 3、离散数学的思想和知识点对计算机算法设计、程序设计有哪些作用

离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系, 因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。

阅读全文

与与离散化算法相似的功能相关的资料

热点内容
怎么把app里面的app上锁 浏览:938
java数字运算 浏览:164
java读取上传的文件 浏览:373
xp怎么加密文档 浏览:273
压缩机风扇电机转速慢 浏览:88
文件服务器如何查看访问人员 浏览:127
绝佳买卖指标加密 浏览:758
git分支编译 浏览:156
51单片机c语言应用程序设计实例精讲 浏览:562
华为安卓手机编译器 浏览:48
怎样在打开微信前加密 浏览:666
旺旺聊天记录怎么加密 浏览:413
王安忆长恨歌pdf 浏览:621
mobile文件夹可以卸载吗 浏览:282
什么是2通道服务器 浏览:346
mc正版怎么开服务器地址 浏览:408
乐高解压朋友圈 浏览:14
linux软raid性能 浏览:369
贴片机编程软件下载 浏览:360
mooc大学乐学python答案 浏览:408