‘壹’ 关于粒子群算法优化目标函数的问题求教
java">functionmain()
clc;clearall;closeall;
tic;%程序运行计时
E0=0.001;%允许误差
MaxNum=100;%粒子最大迭代次数
narvs=1;%目标函数的自变量个数
particlesize=30;%粒子群规模
c1=2;%每个粒子的个体学习因子,也称为加速常数
c2=2;%每个粒子的社会学习因子,也称为加速常数
w=0.6;%惯性因子
vmax=0.8;%粒子的最大飞翔速度
x=-5+10*rand(particlesize,narvs);%粒子所在的位置
v=2*rand(particlesize,narvs);%粒子的飞翔速度
%用inline定义适应度函数以便将子函数文件与主程序文件放在一起,
%目标函数是:y=1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2))
%inline命令定义适应度函数如下:
fitness=inline('1/(1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2)))','x');
%inline定义的适应度函数会使程序运行速度大大降低
fori=1:particlesize
forj=1:narvs
f(i)=fitness(x(i,j));
end
end
personalbest_x=x;
personalbest_faval=f;
[globalbest_favali]=min(personalbest_faval);
globalbest_x=personalbest_x(i,:);
k=1;
whilek<=MaxNum
fori=1:particlesize
forj=1:narvs
f(i)=fitness(x(i,j));
end
iff(i)<personalbest_faval(i)%判断当前位置是否是历史上最佳位置
personalbest_faval(i)=f(i);
personalbest_x(i,:)=x(i,:);
end
end
[globalbest_favali]=min(personalbest_faval);
globalbest_x=personalbest_x(i,:);
fori=1:particlesize%更新粒子群里每个个体的最新位置
v(i,:)=w*v(i,:)+c1*rand*(personalbest_x(i,:)-x(i,:))...
+c2*rand*(globalbest_x-x(i,:));
forj=1:narvs%判断粒子的飞翔速度是否超过了最大飞翔速度
ifv(i,j)>vmax;
v(i,j)=vmax;
elseifv(i,j)<-vmax;
v(i,j)=-vmax;
end
end
x(i,:)=x(i,:)+v(i,:);
end
ifabs(globalbest_faval)<E0,break,end
k=k+1;
end
Value1=1/globalbest_faval-1;Value1=num2str(Value1);
%strcat指令可以实现字符的组合输出
disp(strcat('themaximumvalue','=',Value1));
%输出最大值所在的横坐标位置
Value2=globalbest_x;Value2=num2str(Value2);
disp(strcat('thecorrespondingcoordinate','=',Value2));
x=-5:0.01:5;
y=2.1*(1-x+2*x.^2).*exp(-x.^2/2);
plot(x,y,'m-','linewidth',3);
holdon;
plot(globalbest_x,1/globalbest_faval-1,'kp','linewidth',4);
legend('目标函数','搜索到的最大值');xlabel('x');ylabel('y');gridon;toc;
‘贰’ 关于粒子群算法的目标函数优化,优化函数如下图
function main()
clc;clear all;close all;
tic; %程序运行计时
E0=0.001; %允许误差
MaxNum=100; %粒子最大迭代次数
narvs=1; %目标函数的自变量个数
particlesize=30; %粒子群规模
c1=2; %每个粒子的个体学习因子,也称为加速常数
c2=2; %每个粒子的社会学习因子,也称为加速常数
w=0.6; %惯性因子
vmax=0.8; %粒子的最大飞翔速度
x=-5+10*rand(particlesize,narvs); %粒子所在的位置
v=2*rand(particlesize,narvs); %粒子的飞翔速度
%用inline定义适应度函数以便将子函数文件与主程序文件放在一起,
%目标函数是:y=1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2))
%inline命令定义适应度函数如下:
fitness=inline('1/(1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2)))','x');
%inline定义的适应度函数会使程序运行速度大大降低
for i=1:particlesize
for j=1:narvs
f(i)=fitness(x(i,j));
end
end
personalbest_x=x;
‘叁’ 如何用粒子群优化(PSO)算法实现多目标优化
粒子群算法,也称粒子群优化算法(ParticleSwarmOptimization),缩写为PSO,是近年来发展起来的一种新的进化算法(EvolutionaryAlgorithm-EA)。PSO算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover)和“变异”(Mutation)操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一种并行算法。
‘肆’ 粒子群优化参数寻优
研究PSO参数寻优中,采用粒子群算法对SVM的参数(惩罚参数C,核函数参数σ)进行最优选择。PSO是一种进化计算技术,由Eberhart和Kennedy于1995年提出,其思想源于鸟类捕食行为,算法的数学描述如下(何同弟等,2011):
设在一个D维搜索空间中,由有m个粒子组成的一个群体,其中第i个粒子的位置表示为向量zi=(zi1,zi2,…,ziD),i=1,2,…,m。第i个粒子的飞行速度表示为向量vi=(vi1,vi2,…,viD),其搜索的最佳位置pi=(pi1,pi2,…,piD),整个粒子群搜索到的最优位置pg=(pg1,pg2,…,pgD)。找到这两个最优位置时,各粒子根据如下公式更新自己的速度和位置:
高光谱遥感影像信息提取技术
式中:i=1,2,…,m;ψ是惯性权重函数,用来控制前面速度对当前速度的影响;c1和c2称为加速因子,为非负常数;r1和r2是[0,1]的随机数。
‘伍’ 粒子群优化算法的优化参数范围怎么确定
参数设置时:
LB=[0.5 1 0.3 1]';
UB=[1 2 0.8 1.5]';
这样就确定了参数范围了
‘陆’ 粒子群算法的优缺点
优点:PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。同遗传算法比较,PSO的优势在于简单容易实现,并且没有许多参数需要调整。
缺点:在某些问题上性能并不是特别好。网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。
(6)粒子群算法优化vmd扩展阅读:
注意事项:
基础粒子群算法步骤较为简单。粒子群优化算法是由一组粒子在搜索空间中运动,受其自身的最佳过去位置pbest和整个群或近邻的最佳过去位置gbest的影响。
对于有些改进算法,在速度更新公式最后一项会加入一个随机项,来平衡收敛速度与避免早熟。并且根据位置更新公式的特点,粒子群算法更适合求解连续优化问题。
‘柒’ 粒子群优化算法的参数设置
从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解,粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误
PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置
粒子数: 一般取 20–40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200
粒子的长度: 这是由优化问题决定, 就是问题解的长度
粒子的范围: 由优化问题决定,每一维可是设定不同的范围
Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20
学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间
中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.
全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再用局部PSO进行搜索.
另外的一个参数是惯性权重, 由Shi 和Eberhart提出, 有兴趣的可以参考他们1998年的论文(题目: A modified particle swarm optimizer)。
‘捌’ 一种更简化而高效的粒子群优化算法 怎么样
针对基本粒子群优化(basic particle swarm optimization,简称bPSO)算法容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,采用简化粒子群优化方程和添加极值扰动算子两种策 略加以改进,提出了简化粒子群优化(simple particle swarm optimization,简称sPSO)算法、带极值扰动粒子群优化(extremum disturbed particle swarm optimization,简称tPSO)算法和基于二者的带极值扰动的简化粒子群优化(extremum disturbed and simple particle swarm optimization,简称tsPSO)算法.sPSO去掉了PSO进化方程的粒子速度项而使原来的二阶微分方程简化为一阶微分方程,仅由粒子位置控 制进化过程,避免了由粒子速度项引起的粒子发散而导致后期收敛变慢和精度低问题.tPSO增加极值扰动算子可以加快粒子跳出局部极值点而继续优化.对几个 经典测试函数进行实验的结果表明,sPSO能够极大地提高收敛速度和精度;tPSO能够有效摆脱局部极值点;以上两种策略相结合,tsPSO以更小的种群 数和进化世代数获得了非常好的优化效果,从而使得PSO算法更加实
建议你在网络学术里面查询一些相关文档,对你写论文应该有帮助。
‘玖’ 粒子群优化算法和多模态优化算法有什么区别
摘 要:,粒子群算法据自己的速度来决定搜索过程,只有最优的粒子把信息给予其他的粒子,整个搜索更新过程是跟随当前最优解的过程,所有的粒子还可以更快的收敛于最优解。由于微粒群算法简单,容易实现,与其它求解约束优化问题的方法相比较,具有一定的优势。实验结果表明,对于无约束的非线性求解,粒子群算法表现出较好的收敛性和健壮性。
关键词:粒子群算法;函数优化;极值寻优
0 引言
非线性方程的求根问题是多年来数学家努力解决的问题之一。长期以来,人们已找出多种用于解决方程求根的方法,例如牛顿法、弦割法、抛物线法等。然而,很多传统的方法仅能运用于相应的小的问题集,推广性相对较差。对于一个现实世界中的优化问题,必须尝试很多不同的方法,甚至要发明相应的新的方法来解决,这显然是不现实的。我们需要另外的方法来克服这样的困难。
粒子群算法是一种现代启发式算法,具有推广性强、鲁棒性高等特点[1]。该算法具有群体智能、内在并行性、迭代格式简单、可快速收敛到最优解所在区域等优点[2]。本文采用粒子群算法,对函数的极值进行寻优计算,实现了对函数的极值求解。
1 粒子群算法
1.1 基本原理
粒子群算法(PSO)是一种基于群体的随机优化技术,它的思想来源于对鸟群捕食行为的研究与模拟。粒子群算法与其它基于群体的进化算法相类似,选用“群体”和“进化”的概念,按照个体的适应度值进行操作,也是一种基于迭代的寻优技术。区别在于,粒子群算法中没有交叉变异等进化算子,而是将每个个体看作搜索空间中的微粒,每个微粒没有重量和体积,但都有自己的位置向量、速度向量和适应度值。所有微粒以一定的速度飞行于搜索空间中,其中的飞行速度是由个体飞行经验和群体的飞行经验动态调整,通过追踪当前搜索到的最优值来寻找全局最优值。
1.2 参数选择
粒子群算法需要修改的参数很少,但对参数的选择却十分敏感。El-Gallad A, El-Hawary M, Sallam A, Kalas A[3]主要对算法中的种群规模、迭代次数和粒子速度的选择方法进行了详细分析,利用统计方法对约束优化问题的求解论证了这 3 个参数对算法性能的影响,并给出了具有一定通用性的3 个参数选择原则[4]。
种群规模:通常根据待优化问题的复杂程度确定。
最大速度:决定粒子在一次迭代中的最大移动距离,通常设定为不超过粒子的范围宽度。
加速常数:加速常数c1和c2通常是由经验值决定的,它代表粒子向pbest和gbest靠拢的加速项的权重。一般取值为:c1=c2=2。
中止条件:达到最大迭代次数或得到最小误差要求,通常要由具体问题确定。
惯性权重:惯性权重能够针对待优化问题调整算法的局部和全局搜索能力。当该值较大时有利于全局搜索,较小时有利于局部搜索。所以通常在算法开始时设置较大的惯性权重,以便扩大搜索范围、加快收敛。而随着迭代次数的增加逐渐减小惯性权重的值,使其进行精确搜索,避免跳过最优解。
1.3 算法步骤
PSO算法步骤如下:
Step1:初始化一个规模为 m 的粒子群,设定初始位置和速度。
初始化过程如下:
(1)设定群体规模m;
(2)对任意的i,s,在[-xmax, xmax]内均匀分布,产生初始位置xis;
(3)对任意的i,s,在[-vmax, vmax]内均匀分布,产生速度vis;
(4)对任意的i,设yi=xi,保存个体。
Step2:计算每个粒子的适应度值。
Step3:对每个粒子的适应度值和得到过的最好位置pis的适应度值进行比较,若相对较好,则将其作为当前的最好位置。
Step4:对每个粒子的适应度值和全局得到过的最好位置pgs的适应度值进行比较,若相对较好,则将其作为当前的全局最好位置。
Step5:分别对粒子的所在位置和速度进行更新。
Step6:如果满足终止条件,则输出最优解;否则,返回Step2。
1.4 粒子群算法函数极值求解
粒子群算法优化是计算机智能领域,除蚁群算法外的另一种基于群体智能的优化算法。粒子群算法是一种群体智能的烟花计算技术。与遗传算法相比,粒子群算法没有遗传算法的选择(Selection)、交叉(Crossover)、变异(Mutation)等操作,而是通过粒子在解空间追随最优的粒子进行搜索。
粒子群算法流程如图所示:
粒子群为由n个粒子组成的种群X = (X1,X2,X3,…Xn).
第i个粒子表示一个D维向量Xi = (X1,X2,X3,…XD)T.
第i个粒子的速度为Vi = (Vi1,Vi2,Vi3,…ViD)T.
个体极值为Pi = (Pi1,Pi2,Pi3,…PiD)T.
全局极值为Pg = (Pg1,Pg2,Pg3,…PgD)T.
速度更新为,式中,c1和c2为其两个学习因子的参数值;r1和r2为其两个随机值。
位置更新为.
2 粒子群算法应用举例
2.1 实验问题
这是一个无约束函数的极值寻优,对于Ackley函数,
.
其中c1=20,e=2. 71289。
2.2 实验步骤
对于Ackley函数图形,选取一个凹峰进行分析,程序运行结果如图所示。
图1 Ackley函数图形
可以看出,选取区间内的Ackley函数图形只有一个极小值点。因此,对于该段函数进行寻优,不会陷入局部最小。采用粒子群算法对该函数进行极值寻优。
首先,进行初始化粒子群,编写的MATLAB代码如下:
% 初始化种群
for i=1:sizepop
x1 = popmin1 (popmax1-popmin1)*rand;
% 产生随机个体
x2 = popmin2 (popmax2-popmin2)*rand;
pop(i,1) = x1; % 保存产生的随机个体
pop(i,2) = x2;
fitness(i) = fun([x1,x2]); % 适应度值
V(i,1) = 0; % 初始化粒子速度
V(i,2) = 0;
end
程序运行后所产生的个体值为:
表1 函数个体值
然后,根据待寻优的目标函数,计算适应度值。待寻优的目标函数为:
function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2x(2)^2)/2))-exp((cos(2*pi*x(1)) cos(2*pi*x(2)))/2) 20 2.71289;
根据每一组个体,通过目标函数,得到的适应度值为:
表2 函数适应度值
搜索个体最优极值,即搜索最小的适应度值,我们可利用MATLAB绘图将所有个体的适应度值绘成plot图查看相对最小值。
图3 函数适应度plot图
从图中可看出,当个体=20时,得到相对最小值,在程序中,将其保存下来。
之后进行迭代寻优,直到满足终止条件。
最后,得到的最优值为:
图4 MATLAB运行得到结果
迭代后得到的运行结果图如下:
图5 迭代曲线图
2.3 实验结果
通过图5中可看出,该函数的寻优是收敛的,最优个体和实际情况较吻合。因此,采用粒子群算法进行函数极值寻优,快速、准确且鲁棒性较好。
3 结论
本文阐述了粒子群算法求解最化问题的过程,实验结果表明了该算法对于无约束问题的可行性。与其它的进化算法相比,粒子群算法容易理解、编码简单、容易实现。但是参数的设置对于该算法的性能却有很大的影响,例如控制收敛,避免早熟等。在未来的工作中,将努力于将其它计算智能算法或其它优化技术应用于粒子群算法中,以进一步提高粒子群算法的性能。