导航:首页 > 源码编译 > 二进制人工蜂群算法

二进制人工蜂群算法

发布时间:2022-05-14 08:39:10

java人工蜂群算法求解TSP问题

一、人工蜂群算法的介绍

人工蜂群算法(Artificial Bee Colony, ABC)是由Karaboga于2005年提出的一种新颖的基于群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为,蜜蜂根据各自的分工进行不同的活动,并实现蜂群信息的共享和交流,从而找到问题的最优解。人工蜂群算法属于群智能算法的一种。

二、人工蜂群算法的原理

1、原理

标准的ABC算法通过模拟实际蜜蜂的采蜜机制将人工蜂群分为3类: 采蜜蜂、观察蜂和侦察蜂。整个蜂群的目标是寻找花蜜量最大的蜜源。在标准的ABC算法中,采蜜蜂利用先前的蜜源信息寻找新的蜜源并与观察蜂分享蜜源信息;观察蜂在蜂房中等待并依据采蜜蜂分享的信息寻找新的蜜源;侦查蜂的任务是寻找一个新的有价值的蜜源,它们在蜂房附近随机地寻找蜜源。

假设问题的解空间是

代码:

[cpp]view plain

  • #include<iostream>

  • #include<time.h>

  • #include<stdlib.h>

  • #include<cmath>

  • #include<fstream>

  • #include<iomanip>

  • usingnamespacestd;

  • constintNP=40;//种群的规模,采蜜蜂+观察蜂

  • constintFoodNumber=NP/2;//食物的数量,为采蜜蜂的数量

  • constintlimit=20;//限度,超过这个限度没有更新采蜜蜂变成侦查蜂

  • constintmaxCycle=10000;//停止条件

  • /*****函数的特定参数*****/

  • constintD=2;//函数的参数个数

  • constdoublelb=-100;//函数的下界

  • constdoubleub=100;//函数的上界

  • doubleresult[maxCycle]={0};

  • /*****种群的定义****/

  • structBeeGroup

  • {

  • doublecode[D];//函数的维数

  • doubletrueFit;//记录真实的最小值

  • doublefitness;

  • doublerfitness;//相对适应值比例

  • inttrail;//表示实验的次数,用于与limit作比较

  • }Bee[FoodNumber];

  • BeeGroupNectarSource[FoodNumber];//蜜源,注意:一切的修改都是针对蜜源而言的

  • BeeGroupEmployedBee[FoodNumber];//采蜜蜂

  • BeeGroupOnLooker[FoodNumber];//观察蜂

  • BeeGroupBestSource;//记录最好蜜源

  • /*****函数的声明*****/

  • doublerandom(double,double);//产生区间上的随机数

  • voidinitilize();//初始化参数

  • doublecalculationTruefit(BeeGroup);//计算真实的函数值

  • doublecalculationFitness(double);//计算适应值

  • voidCalculateProbabilities();//计算轮盘赌的概率

  • voidevalueSource();//评价蜜源

  • voidsendEmployedBees();

  • voidsendOnlookerBees();

  • voidsendScoutBees();

  • voidMemorizeBestSource();

  • /*******主函数*******/

  • intmain()

  • {

  • ofstreamoutput;

  • output.open("dataABC.txt");

  • srand((unsigned)time(NULL));

  • initilize();//初始化

  • MemorizeBestSource();//保存最好的蜜源

  • //主要的循环

  • intgen=0;

  • while(gen<maxCycle)

  • {

  • sendEmployedBees();

  • CalculateProbabilities();

  • sendOnlookerBees();

  • MemorizeBestSource();

  • sendScoutBees();

  • MemorizeBestSource();

  • output<<setprecision(30)<<BestSource.trueFit<<endl;

  • gen++;

  • }

  • output.close();

  • cout<<"运行结束!!"<<endl;

  • return0;

  • }

  • /*****函数的实现****/

  • doublerandom(doublestart,doubleend)//随机产生区间内的随机数

  • {

  • returnstart+(end-start)*rand()/(RAND_MAX+1.0);

  • }

  • voidinitilize()//初始化参数

  • {

  • inti,j;

  • for(i=0;i<FoodNumber;i++)

  • {

  • for(j=0;j<D;j++)

  • {

  • NectarSource[i].code[j]=random(lb,ub);

  • EmployedBee[i].code[j]=NectarSource[i].code[j];

  • OnLooker[i].code[j]=NectarSource[i].code[j];

  • BestSource.code[j]=NectarSource[0].code[j];

  • }

  • /****蜜源的初始化*****/

  • NectarSource[i].trueFit=calculationTruefit(NectarSource[i]);

  • NectarSource[i].fitness=calculationFitness(NectarSource[i].trueFit);

  • NectarSource[i].rfitness=0;

  • NectarSource[i].trail=0;

  • /****采蜜蜂的初始化*****/

  • EmployedBee[i].trueFit=NectarSource[i].trueFit;

  • EmployedBee[i].fitness=NectarSource[i].fitness;

  • EmployedBee[i].rfitness=NectarSource[i].rfitness;

  • EmployedBee[i].trail=NectarSource[i].trail;

  • /****观察蜂的初始化****/

  • OnLooker[i].trueFit=NectarSource[i].trueFit;

  • OnLooker[i].fitness=NectarSource[i].fitness;

  • OnLooker[i].rfitness=NectarSource[i].rfitness;

  • OnLooker[i].trail=NectarSource[i].trail;

  • }

  • /*****最优蜜源的初始化*****/

  • BestSource.trueFit=NectarSource[0].trueFit;

  • BestSource.fitness=NectarSource[0].fitness;

  • BestSource.rfitness=NectarSource[0].rfitness;

  • BestSource.trail=NectarSource[0].trail;

  • }

  • doublecalculationTruefit(BeeGroupbee)//计算真实的函数值

  • {

  • doubletruefit=0;

  • /******测试函数1******/

  • truefit=0.5+(sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))-0.5)

  • /((1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*(1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1])));

  • returntruefit;

  • }

  • doublecalculationFitness(doubletruefit)//计算适应值

  • {

  • doublefitnessResult=0;

  • if(truefit>=0)

  • {

  • fitnessResult=1/(truefit+1);

  • }else

  • {

  • fitnessResult=1+abs(truefit);

  • }

  • returnfitnessResult;

  • }

  • voidsendEmployedBees()//修改采蜜蜂的函数

  • {

  • inti,j,k;

  • intparam2change;//需要改变的维数

  • doubleRij;//[-1,1]之间的随机数

  • for(i=0;i<FoodNumber;i++)

  • {

  • param2change=(int)random(0,D);//随机选取需要改变的维数

  • /******选取不等于i的k********/

  • while(1)

  • {

  • k=(int)random(0,FoodNumber);

  • if(k!=i)

  • {

  • break;

  • }

  • }

  • for(j=0;j<D;j++)

  • {

  • EmployedBee[i].code[j]=NectarSource[i].code[j];

  • }

  • /*******采蜜蜂去更新信息*******/

  • Rij=random(-1,1);

  • EmployedBee[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);

  • /*******判断是否越界********/

  • if(EmployedBee[i].code[param2change]>ub)

  • {

  • EmployedBee[i].code[param2change]=ub;

  • }

  • if(EmployedBee[i].code[param2change]<lb)

  • {

  • EmployedBee[i].code[param2change]=lb;

  • }

  • EmployedBee[i].trueFit=calculationTruefit(EmployedBee[i]);

  • EmployedBee[i].fitness=calculationFitness(EmployedBee[i].trueFit);

  • /******贪婪选择策略*******/

  • if(EmployedBee[i].trueFit<NectarSource[i].trueFit)

  • {

  • for(j=0;j<D;j++)

  • {

  • NectarSource[i].code[j]=EmployedBee[i].code[j];

  • }

  • NectarSource[i].trail=0;

  • NectarSource[i].trueFit=EmployedBee[i].trueFit;

  • NectarSource[i].fitness=EmployedBee[i].fitness;

  • }else

  • {

  • NectarSource[i].trail++;

  • }

  • }

  • }

  • voidCalculateProbabilities()//计算轮盘赌的选择概率

  • {

  • inti;

  • doublemaxfit;

  • maxfit=NectarSource[0].fitness;

  • for(i=1;i<FoodNumber;i++)

  • {

  • if(NectarSource[i].fitness>maxfit)

  • maxfit=NectarSource[i].fitness;

  • }

  • for(i=0;i<FoodNumber;i++)

  • {

  • NectarSource[i].rfitness=(0.9*(NectarSource[i].fitness/maxfit))+0.1;

  • }

  • }

  • voidsendOnlookerBees()//采蜜蜂与观察蜂交流信息,观察蜂更改信息

  • {

  • inti,j,t,k;

  • doubleR_choosed;//被选中的概率

  • intparam2change;//需要被改变的维数

  • doubleRij;//[-1,1]之间的随机数

  • i=0;

  • t=0;

  • while(t<FoodNumber)

  • {

  • R_choosed=random(0,1);

  • if(R_choosed<NectarSource[i].rfitness)//根据被选择的概率选择

  • {

  • t++;

  • param2change=(int)random(0,D);

  • /******选取不等于i的k********/

  • while(1)

  • {

  • k=(int)random(0,FoodNumber);

  • if(k!=i)

  • {

  • break;

  • }

  • }

  • for(j=0;j<D;j++)

  • {

  • OnLooker[i].code[j]=NectarSource[i].code[j];

  • }

  • /****更新******/

  • Rij=random(-1,1);

  • OnLooker[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);

  • /*******判断是否越界*******/

  • if(OnLooker[i].code[param2change]<lb)

  • {

  • OnLooker[i].code[param2change]=lb;

  • }

  • if(OnLooker[i].code[param2change]>ub)

  • {

  • OnLooker[i].code[param2change]=ub;

  • }

  • OnLooker[i].trueFit=calculationTruefit(OnLooker[i]);

  • OnLooker[i].fitness=calculationFitness(OnLooker[i].trueFit);

  • /****贪婪选择策略******/

  • if(OnLooker[i].trueFit<NectarSource[i].trueFit)

  • {

  • for(j=0;j<D;j++)

  • {

  • NectarSource[i].code[j]=OnLooker[i].code[j];

  • }

  • NectarSource[i].trail=0;

  • NectarSource[i].trueFit=OnLooker[i].trueFit;

  • NectarSource[i].fitness=OnLooker[i].fitness;

  • }else

  • {

  • NectarSource[i].trail++;

  • }

  • }

  • i++;

  • if(i==FoodNumber)

  • {

  • i=0;

  • }

  • }

  • }

  • ② 人工蜂群算法里太多比喻了,能不能就算法本身的步骤来讲讲

    直接给你JAVA代码吧,看的简单易懂
    import java.lang.Math;

    public class beeColony {

    /* Control Parameters of ABC algorithm*/
    int NP=20; /* The number of colony size (employed bees+onlooker bees)*/
    int FoodNumber = NP/2; /*The number of food sources equals the half of the colony size*/
    int limit = 100; /*A food source which could not be improved through "limit" trials is abandoned by its employed bee*/
    int maxCycle = 2500; /*The number of cycles for foraging {a stopping criteria}*/

    /* Problem specific variables*/
    int D = 100; /*The number of parameters of the problem to be optimized*/
    double lb = -5.12; /*lower bound of the parameters. */
    double ub = 5.12; /*upper bound of the parameters. lb and ub can be defined as arrays for the problems of which parameters have different bounds*/

    int runtime = 30; /*Algorithm can be run many times in order to see its robustness*/

    int dizi1[]=new int[10];
    double Foods[][]=new double[FoodNumber][D]; /*Foods is the population of food sources. Each row of Foods matrix is a vector holding D parameters to be optimized. The number of rows of Foods matrix equals to the FoodNumber*/
    double f[]=new double[FoodNumber]; /*f is a vector holding objective function values associated with food sources */
    double fitness[]=new double[FoodNumber]; /*fitness is a vector holding fitness (quality) values associated with food sources*/
    double trial[]=new double[FoodNumber]; /*trial is a vector holding trial numbers through which solutions can not be improved*/
    double prob[]=new double[FoodNumber]; /*prob is a vector holding probabilities of food sources (solutions) to be chosen*/
    double solution[]=new double[D]; /*New solution (neighbour) proced by v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) j is a randomly chosen parameter and k is a randomlu chosen solution different from i*/

    double ObjValSol; /*Objective function value of new solution*/
    double FitnessSol; /*Fitness value of new solution*/
    int neighbour, param2change; /*param2change corrresponds to j, neighbour corresponds to k in equation v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij})*/

    double GlobalMin; /*Optimum solution obtained by ABC algorithm*/
    double GlobalParams[]=new double[D]; /*Parameters of the optimum solution*/
    double GlobalMins[]=new double[runtime];
    /*GlobalMins holds the GlobalMin of each run in multiple runs*/
    double r; /*a random number in the range [0,1)*/

    /*a function pointer returning double and taking a D-dimensional array as argument */
    /*If your function takes additional arguments then change function pointer definition and lines calling "...=function(solution);" in the code*/

    // typedef double (*FunctionCallback)(double sol[D]);

    /*benchmark functions */

    // double sphere(double sol[D]);
    // double Rosenbrock(double sol[D]);
    // double Griewank(double sol[D]);
    // double Rastrigin(double sol[D]);

    /*Write your own objective function name instead of sphere*/
    // FunctionCallback function = &sphere;

    /*Fitness function*/
    double CalculateFitness(double fun)
    {
    double result=0;
    if(fun>=0)
    {
    result=1/(fun+1);
    }
    else
    {

    result=1+Math.abs(fun);
    }
    return result;
    }

    /*The best food source is memorized*/
    void MemorizeBestSource()
    {
    int i,j;

    for(i=0;i<FoodNumber;i++)
    {
    if (f[i]<GlobalMin)
    {
    GlobalMin=f[i];
    for(j=0;j<D;j++)
    GlobalParams[j]=Foods[i][j];
    }
    }
    }

    /*Variables are initialized in the range [lb,ub]. If each parameter has different range, use arrays lb[j], ub[j] instead of lb and ub */
    /* Counters of food sources are also initialized in this function*/

    void init(int index)
    {
    int j;
    for (j=0;j<D;j++)
    {
    r = ( (double)Math.random()*32767 / ((double)32767+(double)(1)) );
    Foods[index][j]=r*(ub-lb)+lb;
    solution[j]=Foods[index][j];
    }
    f[index]=calculateFunction(solution);
    fitness[index]=CalculateFitness(f[index]);
    trial[index]=0;
    }

    /*All food sources are initialized */
    void initial()
    {
    int i;
    for(i=0;i<FoodNumber;i++)
    {
    init(i);
    }
    GlobalMin=f[0];
    for(i=0;i<D;i++)
    GlobalParams[i]=Foods[0][i];

    }

    void SendEmployedBees()
    {
    int i,j;
    /*Employed Bee Phase*/
    for (i=0;i<FoodNumber;i++)
    {
    /*The parameter to be changed is determined randomly*/
    r = ((double) Math.random()*32767 / ((double)(32767)+(double)(1)) );
    param2change=(int)(r*D);

    /*A randomly chosen solution is used in procing a mutant solution of the solution i*/
    r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
    neighbour=(int)(r*FoodNumber);

    /*Randomly selected solution must be different from the solution i*/
    // while(neighbour==i)
    // {
    // r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
    // neighbour=(int)(r*FoodNumber);
    // }
    for(j=0;j<D;j++)
    solution[j]=Foods[i][j];

    /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
    r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
    solution[param2change]=Foods[i][param2change]+(Foods[i][param2change]-Foods[neighbour][param2change])*(r-0.5)*2;

    /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
    if (solution[param2change]<lb)
    solution[param2change]=lb;
    if (solution[param2change]>ub)
    solution[param2change]=ub;
    ObjValSol=calculateFunction(solution);
    FitnessSol=CalculateFitness(ObjValSol);

    /*a greedy selection is applied between the current solution i and its mutant*/
    if (FitnessSol>fitness[i])
    {

    /*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
    trial[i]=0;
    for(j=0;j<D;j++)
    Foods[i][j]=solution[j];
    f[i]=ObjValSol;
    fitness[i]=FitnessSol;
    }
    else
    { /*if the solution i can not be improved, increase its trial counter*/
    trial[i]=trial[i]+1;
    }

    }

    /*end of employed bee phase*/

    }

    /* A food source is chosen with the probability which is proportioal to its quality*/
    /*Different schemes can be used to calculate the probability values*/
    /*For example prob(i)=fitness(i)/sum(fitness)*/
    /*or in a way used in the metot below prob(i)=a*fitness(i)/max(fitness)+b*/
    /*probability values are calculated by using fitness values and normalized by dividing maximum fitness value*/
    void CalculateProbabilities()
    {
    int i;
    double maxfit;
    maxfit=fitness[0];
    for (i=1;i<FoodNumber;i++)
    {
    if (fitness[i]>maxfit)
    maxfit=fitness[i];
    }

    for (i=0;i<FoodNumber;i++)
    {
    prob[i]=(0.9*(fitness[i]/maxfit))+0.1;
    }

    }

    void SendOnlookerBees()
    {

    int i,j,t;
    i=0;
    t=0;
    /*onlooker Bee Phase*/
    while(t<FoodNumber)
    {

    r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
    if(r<prob[i]) /*choose a food source depending on its probability to be chosen*/
    {
    t++;

    /*The parameter to be changed is determined randomly*/
    r = ((double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
    param2change=(int)(r*D);

    /*A randomly chosen solution is used in procing a mutant solution of the solution i*/
    r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
    neighbour=(int)(r*FoodNumber);

    /*Randomly selected solution must be different from the solution i*/
    while(neighbour == i)
    {
    //System.out.println(Math.random()*32767+" "+32767);
    r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
    neighbour=(int)(r*FoodNumber);
    }
    for(j=0;j<D;j++)
    solution[j]=Foods[i][j];

    /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
    r = ( (double)Math.random()*32767 / ((double)(32767)+(double)(1)) );
    solution[param2change]=Foods[i][param2change]+(Foods[i][param2change]-Foods[neighbour][param2change])*(r-0.5)*2;

    /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
    if (solution[param2change]<lb)
    solution[param2change]=lb;
    if (solution[param2change]>ub)
    solution[param2change]=ub;
    ObjValSol=calculateFunction(solution);
    FitnessSol=CalculateFitness(ObjValSol);

    /*a greedy selection is applied between the current solution i and its mutant*/
    if (FitnessSol>fitness[i])
    {
    /*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
    trial[i]=0;
    for(j=0;j<D;j++)
    Foods[i][j]=solution[j];
    f[i]=ObjValSol;
    fitness[i]=FitnessSol;
    }
    else
    { /*if the solution i can not be improved, increase its trial counter*/
    trial[i]=trial[i]+1;
    }
    } /*if */
    i++;
    if (i==FoodNumber-1)
    i=0;
    }/*while*/

    /*end of onlooker bee phase */
    }

    /*determine the food sources whose trial counter exceeds the "limit" value. In Basic ABC, only one scout is allowed to occur in each cycle*/
    void SendScoutBees()
    {
    int maxtrialindex,i;
    maxtrialindex=0;
    for (i=1;i<FoodNumber;i++)
    {
    if (trial[i]>trial[maxtrialindex])
    maxtrialindex=i;
    }
    if(trial[maxtrialindex]>=limit)
    {
    init(maxtrialindex);
    }
    }

    double calculateFunction(double sol[])
    {
    return Rastrigin (sol);
    }
    double sphere(double sol[])
    {
    int j;
    double top=0;
    for(j=0;j<D;j++)
    {
    top=top+sol[j]*sol[j];
    }
    return top;
    }

    double Rosenbrock(double sol[])
    {
    int j;
    double top=0;
    for(j=0;j<D-1;j++)
    {
    top=top+100*Math.pow((sol[j+1]-Math.pow((sol[j]),(double)2)),(double)2)+Math.pow((sol[j]-1),(double)2);
    }
    return top;
    }

    double Griewank(double sol[])
    {
    int j;
    double top1,top2,top;
    top=0;
    top1=0;
    top2=1;
    for(j=0;j<D;j++)
    {
    top1=top1+Math.pow((sol[j]),(double)2);
    top2=top2*Math.cos((((sol[j])/Math.sqrt((double)(j+1)))*Math.PI)/180);

    }
    top=(1/(double)4000)*top1-top2+1;
    return top;
    }

    double Rastrigin(double sol[])
    {
    int j;
    double top=0;

    for(j=0;j<D;j++)
    {
    top=top+(Math.pow(sol[j],(double)2)-10*Math.cos(2*Math.PI*sol[j])+10);
    }
    return top;
    }
    }

    使用方法是:
    public class test {
    static beeColony bee=new beeColony();

    public static void main(String[] args) {
    int iter=0;
    int run=0;
    int j=0;
    double mean=0;
    //srand(time(NULL));
    for(run=0;run<bee.runtime;run++)
    {
    bee.initial();
    bee.MemorizeBestSource();
    for (iter=0;iter<bee.maxCycle;iter++)
    {
    bee.SendEmployedBees();
    bee.CalculateProbabilities();
    bee.SendOnlookerBees();
    bee.MemorizeBestSource();
    bee.SendScoutBees();
    }
    for(j=0;j<bee.D;j++)
    {
    //System.out.println("GlobalParam[%d]: %f\n",j+1,GlobalParams[j]);
    System.out.println("GlobalParam["+(j+1)+"]:"+bee.GlobalParams[j]);
    }
    //System.out.println("%d. run: %e \n",run+1,GlobalMin);
    System.out.println((run+1)+".run:"+bee.GlobalMin);
    bee.GlobalMins[run]=bee.GlobalMin;
    mean=mean+bee.GlobalMin;
    }
    mean=mean/bee.runtime;
    //System.out.println("Means of %d runs: %e\n",runtime,mean);
    System.out.println("Means of "+bee.runtime+"runs: "+mean);

    }

    }

    ③ 人工蜂群算法limit怎么确定

    可以通过保持其他参数不变,选择不同的limit值进行实验,看哪个效果好来确定。不知道你的问题是不是这个意思。

    ④ 蜂群算法与人工蜂群算法有什么的区别吗

    都是一样的,为什么有的会带上“人工”呢?只是因为这些只能算法都是“人”仿照动物行为而创造的,所以有时候才会带上“人工”两个字。但是指的是一个东西。
    例如神经网络,也有人喜欢说是人工神经网络

    ⑤ 人工蜂群算法的matlab的编程详细代码,最好有基于人工蜂群算法的人工神经网络的编程代码

    蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。


    参考下蚁群训练BP网络的代码。

    ⑥ 人工蜂群算法matlab蜂群种群大小怎么设定

    %/* ABC algorithm coded using MATLAB language */

    %/* Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees. */

    %/* Referance Papers*/

    %/*D. Karaboga, AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION,TECHNICAL REPORT-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department 2005.*/

    %/*D. Karaboga, B. Basturk, A powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm, Journal of Global Optimization, Volume:39, Issue:3,pp:459-171, November 2007,ISSN:0925-5001 , doi: 10.1007/s10898-007-9149-x */

    %/*D. Karaboga, B. Basturk, On The Performance Of Artificial Bee Colony (ABC) Algorithm, Applied Soft Computing,Volume 8, Issue 1, January 2008, Pages 687-697. */

    %/*D. Karaboga, B. Akay, A Comparative Study of Artificial Bee Colony Algorithm, Applied Mathematics and Computation, 214, 108-132, 2009. */

    %/*Copyright ?2009 Erciyes University, Intelligent Systems Research Group, The Dept. of Computer Engineering*/

    %/*Contact:
    %Dervis Karaboga ([email protected] )
    %Bahriye Basturk Akay ([email protected])
    %*/

    clear all
    close all
    clc

    %/* Control Parameters of ABC algorithm*/
    NP=20; %/* The number of colony size (employed bees+onlooker bees)*/
    FoodNumber=NP/2; %/*The number of food sources equals the half of the colony size*/
    limit=100; %/*A food source which could not be improved through "limit" trials is abandoned by its employed bee*/
    maxCycle=2500; %/*The number of cycles for foraging {a stopping criteria}*/

    %/* Problem specific variables*/
    objfun='Sphere'; %cost function to be optimized
    D=100; %/*The number of parameters of the problem to be optimized*/
    ub=ones(1,D)*100; %/*lower bounds of the parameters. */
    lb=ones(1,D)*(-100);%/*upper bound of the parameters.*/

    runtime=1;%/*Algorithm can be run many times in order to see its robustness*/

    %Foods [FoodNumber][D]; /*Foods is the population of food sources. Each row of Foods matrix is a vector holding D parameters to be optimized. The number of rows of Foods matrix equals to the FoodNumber*/
    %ObjVal[FoodNumber]; /*f is a vector holding objective function values associated with food sources */
    %Fitness[FoodNumber]; /*fitness is a vector holding fitness (quality) values associated with food sources*/
    %trial[FoodNumber]; /*trial is a vector holding trial numbers through which solutions can not be improved*/
    %prob[FoodNumber]; /*prob is a vector holding probabilities of food sources (solutions) to be chosen*/
    %solution [D]; /*New solution (neighbour) proced by v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) j is a randomly chosen parameter and k is a randomlu chosen solution different from i*/
    %ObjValSol; /*Objective function value of new solution*/
    %FitnessSol; /*Fitness value of new solution*/
    %neighbour, param2change; /*param2change corrresponds to j, neighbour corresponds to k in equation v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij})*/
    %GlobalMin; /*Optimum solution obtained by ABC algorithm*/
    %GlobalParams[D]; /*Parameters of the optimum solution*/
    %GlobalMins[runtime]; /*GlobalMins holds the GlobalMin of each run in multiple runs*/

    GlobalMins=zeros(1,runtime);

    for r=1:runtime

    % /*All food sources are initialized */
    %/*Variables are initialized in the range [lb,ub]. If each parameter has different range, use arrays lb[j], ub[j] instead of lb and ub */

    Range = repmat((ub-lb),[FoodNumber 1]);
    Lower = repmat(lb, [FoodNumber 1]);
    Foods = rand(FoodNumber,D) .* Range + Lower;

    ObjVal=feval(objfun,Foods);
    Fitness=calculateFitness(ObjVal);

    %reset trial counters
    trial=zeros(1,FoodNumber);

    %/*The best food source is memorized*/
    BestInd=find(ObjVal==min(ObjVal));
    BestInd=BestInd(end);
    GlobalMin=ObjVal(BestInd);
    GlobalParams=Foods(BestInd,:);

    iter=1;
    while ((iter <= maxCycle)),

    %%%%%%%%% EMPLOYED BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%
    for i=1:(FoodNumber)

    %/*The parameter to be changed is determined randomly*/
    Param2Change=fix(rand*D)+1;

    %/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
    neighbour=fix(rand*(FoodNumber))+1;

    %/*Randomly selected solution must be different from the solution i*/
    while(neighbour==i)
    neighbour=fix(rand*(FoodNumber))+1;
    end;

    sol=Foods(i,:);
    % /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
    sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;

    % /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
    ind=find(sol<lb);
    sol(ind)=lb(ind);
    ind=find(sol>ub);
    sol(ind)=ub(ind);

    %evaluate new solution
    ObjValSol=feval(objfun,sol);
    FitnessSol=calculateFitness(ObjValSol);

    % /*a greedy selection is applied between the current solution i and its mutant*/
    if (FitnessSol>Fitness(i)) %/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
    Foods(i,:)=sol;
    Fitness(i)=FitnessSol;
    ObjVal(i)=ObjValSol;
    trial(i)=0;
    else
    trial(i)=trial(i)+1; %/*if the solution i can not be improved, increase its trial counter*/
    end;

    end;

    %%%%%%%%%%%%%%%%%%%%%%%% CalculateProbabilities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %/* A food source is chosen with the probability which is proportioal to its quality*/
    %/*Different schemes can be used to calculate the probability values*/
    %/*For example prob(i)=fitness(i)/sum(fitness)*/
    %/*or in a way used in the metot below prob(i)=a*fitness(i)/max(fitness)+b*/
    %/*probability values are calculated by using fitness values and normalized by dividing maximum fitness value*/

    prob=(0.9.*Fitness./max(Fitness))+0.1;

    %%%%%%%%%%%%%%%%%%%%%%%% ONLOOKER BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    i=1;
    t=0;
    while(t<FoodNumber)
    if(rand<prob(i))
    t=t+1;
    %/*The parameter to be changed is determined randomly*/
    Param2Change=fix(rand*D)+1;

    %/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
    neighbour=fix(rand*(FoodNumber))+1;

    %/*Randomly selected solution must be different from the solution i*/
    while(neighbour==i)
    neighbour=fix(rand*(FoodNumber))+1;
    end;

    sol=Foods(i,:);
    % /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
    sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;

    % /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
    ind=find(sol<lb);
    sol(ind)=lb(ind);
    ind=find(sol>ub);
    sol(ind)=ub(ind);

    %evaluate new solution
    ObjValSol=feval(objfun,sol);
    FitnessSol=calculateFitness(ObjValSol);

    % /*a greedy selection is applied between the current solution i and its mutant*/
    if (FitnessSol>Fitness(i)) %/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
    Foods(i,:)=sol;
    Fitness(i)=FitnessSol;
    ObjVal(i)=ObjValSol;
    trial(i)=0;
    else
    trial(i)=trial(i)+1; %/*if the solution i can not be improved, increase its trial counter*/
    end;
    end;

    i=i+1;
    if (i==(FoodNumber)+1)
    i=1;
    end;
    end;

    %/*The best food source is memorized*/
    ind=find(ObjVal==min(ObjVal));
    ind=ind(end);
    if (ObjVal(ind)<GlobalMin)
    GlobalMin=ObjVal(ind);
    GlobalParams=Foods(ind,:);
    end;

    %%%%%%%%%%%% SCOUT BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    %/*determine the food sources whose trial counter exceeds the "limit" value.
    %In Basic ABC, only one scout is allowed to occur in each cycle*/

    ind=find(trial==max(trial));
    ind=ind(end);
    if (trial(ind)>limit)
    Bas(ind)=0;
    sol=(ub-lb).*rand(1,D)+lb;
    ObjValSol=feval(objfun,sol);
    FitnessSol=calculateFitness(ObjValSol);
    Foods(ind,:)=sol;
    Fitness(ind)=FitnessSol;
    ObjVal(ind)=ObjValSol;
    end;

    fprintf('Ýter=%d ObjVal=%g\n',iter,GlobalMin);
    iter=iter+1;

    end % End of ABC

    GlobalMins(r)=GlobalMin;
    end; %end of runs

    save all

    ⑦ 蜂群算法属于初级还是高级

    人工蜂群算法(Artificial Bee Colony, ABC)是由Karaboga于2005年提出的一种新颖的基于群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为,蜜蜂根据各自的分工进行不同的活动,并实现蜂群信息的共享和交流,从而找到问题的最优解。人工蜂群算法属于群智能算法的一种。

    ⑧ 人工蜂群算法适合在srm中应用吗

    蜜蜂是一种群居昆虫,虽然单个昆虫的行为极其简单,但是由单个简单的个体所组成的群体却表现出极其复杂的行为。真实的蜜蜂种群能够在任何环境下,以极高的效率从食物源(花朵)中采集花蜜;同时,它们能适应环境的改变。
    蜂群产生群体智慧的最小搜索模型包含基本的三个组成要素:食物源、被雇佣的蜜蜂(employed foragers)和未被雇佣的蜜蜂(unemployed foragers);两种最为基本的行为模型:为食物源招募(recruit)蜜蜂和放弃(abandon)某个食物源。
    (1)食物源:食物源的价值由多方面的因素决定,如:它离蜂巢的远近,包含花蜜的丰富程度和获得花蜜的难易程度。使用单一的参数,食物源的“收益率”(profitability),来代表以上各个因素。
    (2)被雇用的蜜蜂:也称引领蜂(Leader),其与所采集的食物源一一对应。引领蜂储存有某一个食物源的相关信息(相对于蜂巢的距离、方向、食物源的丰富程度等)并且将这些信息以一定的概率与其他蜜蜂分享。
    (3)未被雇用的蜜蜂:其主要任务是寻找和开采食物源。有两种未被雇用的蜜蜂:侦查蜂(Scouter)和跟随蜂(Follower)。侦察蜂搜索蜂巢附近的新食物源;跟随蜂等在蜂巢里面并通过与引领蜂分享相关信息找到食物源。一般情况下,侦察蜂的平均数目是蜂群的5%-20%。

    阅读全文

    与二进制人工蜂群算法相关的资料

    热点内容
    ubuntu压缩zip 浏览:2
    vigenere算法的方法是什么 浏览:666
    pdf保护破解 浏览:341
    仿微信聊天系统源码广州公司 浏览:106
    怎么查看我的世界服务器日志 浏览:430
    怎么从程序员走到成功 浏览:824
    把软件放入文件夹中如何移出 浏览:209
    红包源码企业即时聊天软件 浏览:581
    xp安装python 浏览:10
    西门子参数编程读取半径值 浏览:403
    洗首饰解压小视频 浏览:966
    01背包问题的算法解决 浏览:373
    sd卡放哪个文件夹 浏览:301
    解释器模式java 浏览:104
    android垂直自动滚动条 浏览:153
    计算器java小程序 浏览:27
    java的简称 浏览:68
    云服务器公网ip地址 浏览:581
    php对数据库操作 浏览:237
    java爬图片 浏览:868