导航:首页 > 源码编译 > 多轴疲劳计算法

多轴疲劳计算法

发布时间:2022-05-14 12:55:03

㈠ 疲劳强度的理论分析

疲劳的机制可以分成三个相互关联的过程:
1. 裂纹产生
2. 裂纹延伸
3. 断裂
FEA应力分析可以预测裂纹的产生。许多其他技术,包括动态非线性有限元分析可以研究与裂纹的延伸相关的应变问题。由于设计工程师最希望从一开始就防止疲劳裂纹的出现,确定材料的疲劳强度。
裂纹开始出现的时间以及裂纹增长到足以导致零部件失效的时间由下面两个主要因素决定:零部件的材料和应力场。材料疲劳测试方法可以追溯到19 世纪,由August Wöhler 第一次系统地提出并进行了疲劳研究。标准实验室测试采用周期性载荷,例如旋转弯曲、悬臂弯曲、轴向推拉以及扭转循环。科学家和工程师将通过此类测试获得的数据绘制到图表上,得出每类应力与导致失效的周期重复次数之间的关系,或称S-N曲线。工程师可以从S-N 曲线中得出在特定周期数下材料可以承受的应力水平。
该曲线分为高周疲劳和低周疲劳两个部分。一般来说,低周疲劳发生在10,000 个周期之内。曲线的形状取决于所测试材料的类型。某些材料,例如低碳钢,在特定应力水平(称为耐疲劳度或疲劳极限)下的曲线比较平缓。不含铁的材料没有耐疲劳度极限。
大体来说,只要在设计中注意应用应力不超过已知的耐疲劳度极限,零部件一般不会在工作中出现失效。但是,耐疲劳度极限的计算不能解决可能导致局部应力集中的问题,即应力水平看起来在正常的“安全”极限以内,但仍可能导致裂纹的问题。
与通过旋转弯曲测试确定的结果相同,疲劳载荷历史可以提供关于平均应力和交替应力的信息。测试显示,裂纹延伸的速度与载荷周期和载荷平均应力的应力比率有关。裂纹仅在张力载荷下才会延伸。因此,即使载荷周期在裂纹区域产生压缩应力,也不会导致更大的损坏。但是,如果平均应力显示整个应力周期都是张力,则整个周期都会导致损坏。
许多工况载荷历史中都会有非零的平均应力。人们发明了三种平均应力修正方法,可以省去必须在不同平均应力下进行疲劳测试的麻烦:
Goodman 方法- 通常适用于脆性材料。
Gerber 方法- 通常适用于韧性材料。
Soderberg 方法- 通常最保守。
这三种方法都只能应用于所有相关联的S-N 曲线都基于完全反转载荷的情况。而且,只有所应用疲劳载荷周期的平均应力与应力范围相比很大时,修正才有意义。实验数据显示,失效判据位于Goodman 曲线和Gerber 曲线之间。这样,就需要一种实用的方法基于这两种方法并使用最保守的结果来计算失效。
疲劳寿命的计算方法
对每个设计进行物理测试明显是不现实的。在多数应用中,疲劳安全寿命设计需要预测零部件的疲劳寿命,从而确定预测的工况载荷和材料。计算机辅助工程(CAE) 程序使用三种主要方法确定总体疲劳寿命。这些方法是:
·应力寿命方法(SN)
这种方法仅基于应力水平,只使用Wöhler 方法。尽管不适用于包含塑性部位的零部件,低周疲劳的精确度也乏善可陈,但这种方法最容易实施,有丰富的数据可供使用,并且在高周疲劳中有良好的效果。
· 应变寿命(EN)
这种方法可以对局部区域的塑性变形进行更详细的分析,非常适合低周疲劳应用。但是,结果存在一些不确性。
· 线性弹性破坏力学(LEFM)
这种方法假设裂缝已经存在并且被检测到,然后根据应力强度预测裂缝的增长。借助计算机代码和定期检查,这种方法对大型结构很实用。由于易于实施并且有大量的材料数据可用,SN 是最常用的方法。
设计人员使用SN 方法计算疲劳寿命
在计算疲劳寿命时,应考虑等幅载荷和变幅载荷。
这种方法假设零部件在恒定的幅度、恒定的平均应力载荷周期下工作。通过使用SN 曲线,设计人员可以快速计算导致零部件发生失效的此类周期数量。而对于零部件需要在多种载荷下工作的情况,则可采用Miner 规则来计算每种载荷情况的损坏结果,并将所有这些损坏结果合并起来获得一个总体的破坏值。
其结果称为“损坏因子”,是一个失效分数值。零部件在D = 1.0 时发生失效,因此,如果D = 0.35,该零部件的寿命已经消耗了35%。这一理论还认为由应力周期导致的损坏与损坏在载荷历史的哪个位置发生无关,并且损坏积累速度与应力水平无关。
这种方法假设零部件在恒定的幅度、恒定的平均应力载荷周期下工作。通过使用SN 曲线,设计人员可以快速计算导致零部件发生失效的此类周期数量。
而对于零部件需要在多种载荷下工作的情况,则可采用Miner 规则来计算每种载荷情况的损坏结果,并将所有这些损坏结果合并起来获得一个总体的破坏值。其结果称为“损坏因子”,是一个失效分数值。零部件在D = 1.0 时发生失效,因此,如果D = 0.35,该零部件的寿命已经消耗了35%。这一理论还认为由应力周期导致的损坏与损坏在载荷历史的哪个位置发生无关,并且损坏积累速度与应力水平无关。
在真实的环境条件下,多数零部件承载的载荷历史是不断变化的,幅度和平均应力都是如此。因此,更为通用和现实的方法需要考虑变幅载荷,在这种情况下,应力尽管随着时间循环反复,但其幅度是变化的,这就有可能将应力分解成载荷“块”。在处理这种类型的载荷时,工程师使用一种称为“雨流法计数”的技术。附录B 讨论如何研究FEA 疲劳结果,它就雨流法计数提供了更多信息。
在通过SN 方法研究疲劳方面,FEA 提供了一些非常优秀的工具,这是因为输入由线弹性应力场组成,并且FEA 能够处理多种载荷情况交互作用的可能情形。如果要计算最坏情况的载荷环境(这是一种典型方法),系统可以提供大量不同的疲劳计算结果,包括寿命周期图、破坏图以及安全系数图。此外,FEA 可以提供较小主要交替应力除以较大主要交替应力的比率的图解(称为双轴性指示图),以及雨流矩阵图。后者是一个3D 直方图,其中的X 和Y 轴代表交替应力和平均应力,Z 轴代表每个箱所计的周期数。

㈡ 为什么FE-SAFE计算云图和计算结果不一样

可能是有一方的结果是错误的,你可以进行第二次计算。
Fesafe是一款高级疲劳耐久性分析和信号处理的软件,它是多轴疲劳分析解决方案的领导者,算法先进,功能全面细致,是世界公认精度较高的疲劳分析软件。
一、疲劳计算的重要性,对于设计工程而言不言自明

解决极限强度问题,方法多种多样,已经形成了行业通识,解决疲劳强度问题,却不哪么好说明白,甚至很多计算工程师对于疲劳理论的真实性都有怀疑态度。

怀疑人生可以,但是不能怀疑疲劳计算理论和程序,因为怀疑完,还要继续使用这套理论和方法。往小了说,这叫说一套做一套,往大了说,这就是人格分裂的特征!

㈢ 轴承常见疲劳失效形式及抗疲劳方法有哪些,你知道吗

大量的应用实践和寿命实验都表明,轴承失效多为接触表面疲劳。将疲劳列在轴承六种常见失效模式之首,被列在第六位的断裂在形成过程中也因有疲劳的原因,被称为疲劳断裂。典型的疲劳失效分为次表面起源型和表面起源型。
一.次表面起源型疲劳
滚动接触最大接触应力发生在表面下一定深度的某处,在交变应力的反复作用下,在该处形成疲劳源(微裂纹)。裂纹源在循环应力下逐步向表面扩展,形成开放式的片状裂缝,进而被撕裂为片状颗粒从表面剥落,产生麻点、凹坑。如该处轴承钢存在某种薄弱点、或缺陷(常见的如非金属夹杂物、气隙、粗大碳化物的晶界面),将加速疲劳源的形成和疲劳裂纹的扩展,大大降低疲劳寿命。
二.表面起源型疲劳
接触表面处有损伤,这些损伤可能是原始的,即制造过程中形成的划伤、碰痕,也可能是使用中产生的,如润滑剂中的硬颗粒,轴承零件相对运动产生的微小擦伤;损伤处可能存在润滑不良,如润滑剂贫乏,润滑剂失效;不良的润滑状态加剧滚动体与滚道之间的相对滑动,导致表面损伤处的微凸体根部产生显微裂纹;裂纹扩展导致微凸体脱落,或形成片状剥落区。这种剥落深度较浅,有时易与暗灰色蚀斑相混淆。
三.疲劳断裂
疲劳断裂的起源是过度紧配合产生的装配应力与循环交变应力形成的疲劳屈服,装配应力、交变应力与屈服极限之间的平衡一旦失去,便会沿套圈轴线方向产生断裂,形成贯穿状的裂缝。
实践中正常使用失效的轴承,其损坏大多如上所述,即接触表面疲劳,而三种疲劳失效类型又以次表面起源型疲劳最为常见,ASO281和ISO281/amd.2推荐的轴承寿命计算方法就是以次表面起源型疲劳为基础得出的。
常用的抗疲劳方法有:
A. 热处理技术
热处理是常用的改善材料力学性能的工艺方法,为了适应不同材料零件的不同使用要求,需要选择不同的热处理工艺,预先热处理组织、淬火加热温度、加热速度、冷却方式(介质与速度)、回火温度与时间等都对机械性能有明显影响,要对诸多热处理参数进行优化、组合,以求得适应使用条件的最佳性能,从而延长零件的耐疲劳寿命。构建热处理虚拟生产平台,推动热处理技术向高新技术知识密集型转变。热处理工艺参数的优化及发展数字化热处理技术是实现抗疲劳制造的重要前提。
B. 表面化学热处理
表面化学热处理的改性作用主要在表面,可根据不同的使用要求,选择渗入的化学元素,如渗碳后淬回火以提高表面硬度,但工件畸变不易控制:渗氮后形成金属氮化物可获得更高的表面硬度及耐磨性、耐蚀性和抗疲劳性能,且工件畸变小,但效率不高;共渗工艺使硬度、耐磨、耐蚀、抗疲劳性能更优,且淬火畸变少,但硬化层薄,不宜于重载工件。表面化学热处理的发展方向是扩大低温化学处理的应用,提高渗层质量,加速处理过程,发展环保型工艺、复合渗工艺及模拟数字化处理技术。
C. 表面强化技术的应用
传统的表面强化技术源于冷作硬化原理,如抛丸、喷砂、喷丸等,新的表面强化技术如激光表面硬化、激光喷丸表面硬化、超声滚光硬化、化学方法表面硬化,复合各种工艺的表面硬化新技术已在许多领域中被成功应用,如激光一喷丸工艺(激光冲击处理),使用高能脉冲激光在零件表面形成冲击波,使表面材料产生压缩和塑性变形,形成表面残余压应力,从而增强了抗疲劳能力(如抗应力裂纹、耐腐蚀疲劳等)。
D. 表面改性技术
常用的表面改性技术主要有离子注入和表面涂覆。
离子注入是非高温过程,没有冶金学和平衡相图的限制,可根据不同需要选择不同注入元素与剂量以获得预期的表面性能。如:注入铬离子以增强基体材料的抗腐蚀和耐疲劳能力;注入硼离子以增强基体的抗磨损能力。
表面涂覆技术包括物理气相沉积(PVD),化学气相沉积(CVD)射频溅射(RF)离子喷镀(PSC),化学镀等。
此外,离子渗工艺在一定真空度下利用高压直流电使被渗元素处于离子状态,使产生的离子流轰击工件表面,在表面形成化合物达到降低摩擦、提高耐磨性的目的。
E. 微细加工与光整技术
作为一种先进的制造技术,高精度的微细加工与调配、光整技术,也为提高基础零件的抗疲劳能力发挥出重要作用。超精密的研磨加工、涡流光整加工,以降低工件表面粗糙度为目的,加工后的表面理化特性、力学特性、接触处的轮廓形状都发生有益的改变,可修正接触应力分布,利于动力润滑油膜的形成,提高疲劳寿命。
F. 协调硬度匹配
不同零件的硬度匹配关系,也能协调滚动接触处的应力与应变传递状态,对延长零件的疲劳寿命产生明显效果。

㈣ 求尚德广的博士毕业论文《多轴疲劳损伤与寿命预测的研究》

㈤ 轴有哪几种强度计算方法

轴的常用强度计算方法有四种:
(1)按扭转强度条件计算,主要应用于设计传动轴,初步估算轴径以便进行结构设计等。
(2)按弯扭合成强度条件计算,主要应用于计算一般重要的、弯扭复合的轴。
(3)按疲劳强度条件进行精确校核,主要应用于重要的、计算精度较高的轴。
(4)按静强度条件进行校核,主要应用于瞬时过载很大或应力循环的不对称性较为严重的轴。

㈥ 在计算轴的疲劳强度计算时,如果同一截面上有几个应力

在进行轴的疲劳强度计算时,如果同一截面上有几个应力集中源,应该如何取定应力集中系数?
答:应去同截面上几个应力集中源中有效应力集中系数中的最大值为该剖面的有效应力集中系数。

㈦ 多轴疲劳强度的基本信息

作者:尚德广王德俊
ISBN:10位[703018324X]13位[9787030183248]
出版社:科学出版社
出版日期:2007-02
定价:

㈧ fe-safe中怎样实现多轴低周疲劳计算

fe-safe中怎样实现多轴低周疲劳计算
右键工程,选择“打开方式”->“Xcode"”
在Xcode中设置发布证书。
选择“Proct”->"Edit Scheme..."打开如下界面
在“Build Configuration”中选择“Release”,单击"OK"
选择菜单栏中的"Proct"->"Archive"
之后等等待几秒钟出现如下操作框。选择“Export...”
弹出如下提示框,选择"Save for iOS APP Store Deloyment",点击“Next”
点击“Next”
在弹出的界面中做合适选择。
点击“Choose”后,等待几秒,出现如下界面后,点击“Export”
等待几秒,弹出保存界面,设置包名称后,点击“Export”,生成安装包即可。

阅读全文

与多轴疲劳计算法相关的资料

热点内容
ubuntu压缩zip 浏览:2
vigenere算法的方法是什么 浏览:666
pdf保护破解 浏览:341
仿微信聊天系统源码广州公司 浏览:106
怎么查看我的世界服务器日志 浏览:430
怎么从程序员走到成功 浏览:824
把软件放入文件夹中如何移出 浏览:209
红包源码企业即时聊天软件 浏览:581
xp安装python 浏览:10
西门子参数编程读取半径值 浏览:403
洗首饰解压小视频 浏览:966
01背包问题的算法解决 浏览:373
sd卡放哪个文件夹 浏览:301
解释器模式java 浏览:104
android垂直自动滚动条 浏览:153
计算器java小程序 浏览:27
java的简称 浏览:68
云服务器公网ip地址 浏览:581
php对数据库操作 浏览:237
java爬图片 浏览:868