导航:首页 > 源码编译 > 矩阵算法介绍

矩阵算法介绍

发布时间:2022-05-14 20:14:48

1. 矩阵运算是什么

矩阵运算是指矩阵A,一个m行n列的矩阵(共有m*n个元素),与其他的数字或者其他的矩阵进行运算。常见的求矩阵的逆、矩阵特征值和特征向量。矩阵乘法,增广矩阵。关于矩阵,请参考书本《矩阵论》,华中科技大学出版社,杨明老师着的《矩阵论》讲的特别好。三维变换是指将一个三维向量比如向量a=(1,2,3),通过一定的转换和变换成为一个新的三维向量b。可以把三维向量看作是1*3的矩阵,即1行3列的矩阵,那么三维变换也就是矩阵运算的特殊情况。这个特殊的矩阵运算的输入是一个1*3的矩阵,输出也是1*3的矩阵。
事实上,正常情况下,不会有人把向量叫做矩阵,因为向量是比较特殊的矩阵,可以概括道更细的更精确的分类向量,大部分就把向量叫向量,不叫矩阵。
因此,三维变换实质是矩阵运算,只是不那么叫而已;但矩阵运算不是三维变换。
该图代表一个3*3的矩阵,里面的每个字符的位置应该是一个数字。
总结来说:三维变换是将(a,b,c)变成(c,d,e)(每个字母处代表一个数字)
而矩阵运算的范围很广,只要参与运算的有个矩阵就称矩阵运算。矩阵就是一个由若干行若干列组成的数字集合。比如,图上显示的就是3*3矩阵。

2. 矩阵运算法则是什么

三种矩阵初等行(列)变换:对调两行(列);以不为0的数字k乘以某行(列);不为0的k乘以某行(列)再加到另一行(列)上。

行阶梯型矩阵:可以画出一条阶梯线,线的下方全为0,且每个阶梯之后一行,台阶数即为非零行的行数。如下图,3个行阶梯的下方,全部为0。

相关信息:

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。

针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。

3. 矩阵a*算法是什么

矩阵A*表示A矩阵的伴随矩阵。

伴随矩阵的定义:某矩阵A各元素的代数余子式,组成一个新的矩阵后再进行一下转置,叫做A的伴随矩阵。

某元素代数余子式就是去掉矩阵中某元素所在行和列元素后的形成矩阵的行列式,再乘上-1的(行数+列数)次方。

伴随矩阵的求发:当矩阵是大于等于二阶时:

主对角元素是将原矩阵该元素所在行列去掉再求行列式。

非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^(x+y) x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始的。

主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以(-1)^(x+y)=(-1)^(2x)=1,一直是正数,没必要考虑主对角元素的符号问题。

4. 简单介绍一下有关矩阵的算法

Matrix类的变形方法,最终都是根据用户给出的参数修改内部矩阵。这些方法的不同之处,在于修改值的算法,以及修改结果在矩阵中的位置。

当用户在代码中调用translate(5,13)时,AS3修改矩阵类的内建矩阵,将其中的(tx,ty)T与(5,13)T相加,由于在矩阵创建时(tx,ty)被初始化为(0,0),所以这个结果就是向量(tx,ty)与(5,13)的和。

5. 矩阵运算包括哪些运算(至少列出四种形式)

矩阵的加、减、乘、除(求逆)、求秩
一、两个矩阵的加是矩阵中对应的元素相加,相加的前提是:两个矩阵要是通行矩阵,即具有相同的行和 列数。
如 矩阵A=[1 2] B=[2 3] ,A+B=[1+2 2+3]=[3 5]。
二、两个矩阵相减,跟加法类似。
三、矩阵的乘法。两个矩阵要可以相乘,必须是A矩阵的列数B矩阵的行数相等,才可以进行乘法,乘法的原则是,A矩阵的第i行中的元素分别与B矩阵中的第j列中的元素相乘再求和,得到的结果就是新矩阵的第i行第j列的值。
四、矩阵的除法,一般不说矩阵的除法。都是讲的矩阵求逆,找一点参考资料看看比较好啦,用这个简单文字语言不是很好描述的哟。

6. 矩阵的公式是什么

矩阵的基本运算公式有加法,减法,数乘,转置,共轭和共轭转置。

1、加法运算A+B=C、数乘运算k*A=B、乘法运算A*B=C,加法运算和数乘运算合称线性运算,由加法运算和数乘运算可以得到减法运算A+(-1)*B=A-B,矩阵没有除法运算,两个矩阵之间是不能相除的,但是当矩阵可逆的时候,可以对矩阵求逆。

2、矩阵的秩计算公式是A=aij m×n。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。

3、行列式和他的转置行列式相等,变换一个行列式的两行,行列式改变符号即变为之前的相反数,如果一个行列式有两行完全相同,那么这个行列式等于零,一个行列式中的某一行,所有元素的公因子可以提到行列式符号的外面,如果一个行列式中有一行,的元素全部是零,那么这个行列式等于零。

矩阵的应用:

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。

针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。

7. 矩阵计算的介绍

《矩阵计算》是一本专业用书。本书系统介绍了矩阵计算的基本理论和方法。内容包括矩阵乘法、矩阵分析、线性方程组、正交化和最小二乘法、特征值问题、Lanczos方法、矩阵函数及专题讨论等。书中的许多算法都有现成的软件包实现,每节后还附有习题,并有注释和大量参考文献。本书可作为高等学校数学系高年级本科生和研究生的教材,亦可作为计算数学和工程技术人员的参考用书。

8. 矩阵算法是什么

矩阵算法指矩阵与算法。

矩阵乘法是一种高效的算法可以把一些一维递推优化到log( n ),还可以求路径方案等,所以更是是一种应用性极强的算法。矩阵,是线性代数中的基本概念之一。

一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分广泛。

矩阵乘法的两个重要性质:

一,矩阵乘法不满足交换律。

二,矩阵乘法满足结合律。矩阵乘法不满足交换律,因为交换后两个矩阵有可能不能相乘。它又满足结合律,假设你有三个矩阵A、B、C,那么(AB)C和A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。

9. 矩阵的计算方法是什么

1、确认矩阵是否可以相乘。只有第一个矩阵的列的个数等于第二个矩阵的行的个数,这样的两个矩阵才能相乘。

图示的两个矩阵可以相乘,因为第一个矩阵,矩阵A有3列,而第二个矩阵,矩阵B有3行。

(9)矩阵算法介绍扩展阅读

一般计算中,或者判断中还会遇到以下11种情况来判断是否为可逆矩阵:

1、秩等于行数。

2、行列式不为0。

3、行向量(或列向量)是线性无关组。

4、存在一个矩阵,与它的乘积是单位阵。

5、作为线性方程组的系数有唯一解。

6、满秩。

7、可以经过初等行变换化为单位矩阵。

8、伴随矩阵可逆。

9、可以表示成初等矩阵的乘积。

10、它的转置矩阵可逆。

11、它去左(右)乘另一个矩阵,秩不变。

10. 最简单的矩阵计算方法

最低0.27元/天开通网络文库会员,可在文库查看完整内容>
原发布者:第二天神
矩阵的运算(一)矩阵的线性运算特殊乘法:(二)关于逆矩阵的运算规律(三)关于矩阵转置的运算规律(四)关于伴随矩阵的运算规律(五)关于分块矩阵的运算法则(六)求变换矩阵(七)特征值与矩阵(1)(2)麦克劳林展开式第一章1.1线性空间:定义1:设V是一个非空集合,P是数域,在V中定义如下两种计算:1.加法:对于任意两个元素,按照某一法则,总有唯一元素与之对应,则2.数乘:对于任意一个及任意元素按照某一法则,总有唯一的元素满足以下八种运算规律,该空间为线性空间:1)2)3)在V中存在一个元素0,使它对任意,都有。拥有这一性质的元素称为零元素4)对任意,在V中存在相应元素,使得,称β为α的负元素,记为-α5)6)7)8)1*α=α1.2线性子空间:定义:V是线性空间,W是V的一个非空子集,如果W中定义的加法与数乘对应于W封闭构成线性空间,则W是V的子空间。记为。充要条件:W对应于V中两种运算都必须封闭、1.3内积空间定义:设V是数域P上的线性空间,对于V上的两个向量α和β按照某一法则都有唯一的复数与他们相对应,且具有以下性质()称1.4线性变换定义1:对于线性空间V中任意一个向量α,按照一定规律总存在α’与之对应,则成这一规律为V上的一个变换(映射)。记为:。线性变换定义:数域P上的线性空间V的一个变换对于任意1.5正交变换与酉变换:定义1:若数域P上的欧式空间(酉空间)V上的线性变换,对任意则称上的正交变换。(酉变换)酉空间定义:设V是

阅读全文

与矩阵算法介绍相关的资料

热点内容
ubuntu压缩zip 浏览:2
vigenere算法的方法是什么 浏览:666
pdf保护破解 浏览:341
仿微信聊天系统源码广州公司 浏览:106
怎么查看我的世界服务器日志 浏览:430
怎么从程序员走到成功 浏览:824
把软件放入文件夹中如何移出 浏览:209
红包源码企业即时聊天软件 浏览:581
xp安装python 浏览:10
西门子参数编程读取半径值 浏览:403
洗首饰解压小视频 浏览:966
01背包问题的算法解决 浏览:373
sd卡放哪个文件夹 浏览:301
解释器模式java 浏览:104
android垂直自动滚动条 浏览:153
计算器java小程序 浏览:27
java的简称 浏览:68
云服务器公网ip地址 浏览:581
php对数据库操作 浏览:237
java爬图片 浏览:868