导航:首页 > 源码编译 > 和向量的运算法则

和向量的运算法则

发布时间:2022-05-22 11:28:58

㈠ 向量的运算的所有公式是什么

加法减法和数乘。

1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。

2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。

3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。

向量的数量积求法

已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2

㈡ 向量的有关计算法则

1、向量的加法

向量的加法
向量的加法满足平行四边形法则和三角形法则。

向量的加法OB+OA=OC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

向量的减法
AB-AC=CB. 即“共同起点,指向被

向量的减法减”
a=(x,y)b=(x',y') 则a-b=(x-x',y-y').
3、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向;

向量的数乘
当λ<0时,λa与a反方向;

向量的数乘当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
4、向量的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a·b=x·x'+y·y'。
向量的数量积的运算律
a·b=b·a(交换律);
(λa)·b=λ(a·b)(关于数乘法的结合律);
(a+b)·c=a·c+b·c(分配律);
向量的数量积的性质
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。
2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。
3、|a·b|≠|a|·|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
5、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a垂直b〈=〉a×b=|a||b|。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
a×(b+c)=a×b+a×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。
6、三向量的混合积

向量的混合积
定义:给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,

向量的混合积所得的数叫做三向
量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c
混合积具有下列性质:
1、三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)
2、上性质的推论:三向量a、b、c共面的充要条件是(abc)=0
3、(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb)
4、(a×b)·c=a·(b×c)

㈢ 向量的加减乘除怎么算

1、向量的加法:满足平行四边形法则和三角形法则,即

(3)和向量的运算法则扩展阅读:

一、向量加法的运算律:

1、交换律:a+b=b+a;

2、结合律:(a+b)+c=a+(b+c)。

3、加减变换律:a+(-b)=a-b

4、向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。

二、向量的数乘规律:

1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)²≠a²·b²。

2、向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c。

参考资料来源:网络--向量





㈣ 向量的运算法则

向量的加法满足平行四边形法则和三角形法则。

向量的加法OB+OA=OC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

向量的减法
AB-AC=CB. 即“共同起点,指向被

向量的减法减”
a=(x,y)b=(x',y') 则a-b=(x-x',y-y').
3、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向;
向量的数乘
当λ<0时,λa与a反方向;

向量的数乘当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
4、向量的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a·b=x·x'+y·y'。 向量的数量积的运算律
a·b=b·a(交换律);
(λa)·b=λ(a·b)(关于数乘法的结合律);
(a+b)·c=a·c+b·c(分配律);
向量的数量积的性质
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。
2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。
3、|a·b|≠|a|·|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
5、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a垂直b〈=〉a×b=|a||b|。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
a×(b+c)=a×b+a×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。

㈤ 向量运算法则

空间向量运算法则:已知向量a,b的空间坐标,那么向量a+向量b=?向量a-向量b=?
向量a·向量b=?
设a=(a1,a2,a3),b=(b1,b2,b3)
a+b=(a1+b1,a2+b2,a3+b3)
a-b=(a1-b1,a2-b2,a3-b3)
a·b=a1b1+a2b2+a3b3

㈥ 向量的加减乘除运算法则是什么

向量量是指具有方向和大小的量,它的线段长度是大小,向量有三角形法则和是四边形形法则,另外,向量只有加减运算,没有乘除关系。

㈦ 向量运算法则是什么

①三角形定则:三角形定则主要是将各个向量依次按照首位顺序相互连接,最后得出的结果为第一个向量的起点指向最后一个向量的重点,这种解法则是被称之为三角形定则。

②平行四边形定则:而平行四边形定则则是选择以向量的两个边作为平行四边形,而结果则是作为公共起点的一个对角线,平行四边形定则还能解决向量的减法。

其中是将向量平移到公共起点上面,然后以向量的两个边作为平行四边形,最终由减向量的重点指向被减向量的重点,而这个平行四边形定则只是可以用来做两个非零非共线向量的加减。

相关定义

1、滑动向量

沿着直线作用的向量称为滑动向量。

2、固定向量

作用于一点的向量称为固定向量(亦称胶着向量)。

3、位置向量

对于坐标平面内的任意一点P,我们把向量OP叫做点P的位置向量,记作:向量P。

4、方向向量

直线l上的向量a以及与向量a共线的向量叫做直线l上的方向向量。

㈧ 向量的加减乘除运算法则是什么

向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0OA-OB=BA.即“共同起点,指向被减”,例如:a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。

向量的乘法:实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。当λ>0时,λa的方向与a的方向相同。



向量加法的运算律:

1、交换律:a+b=b+a;

2、结合律:(a+b)+c=a+(b+c)。

3、加减变换律:a+(-b)=a-b

4、向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。

㈨ 向量、代数计算法则哪些有区别

区别很大,那是两种不同性质的东西在运算。但是也有相同的地方。
向量之间的加减运算和数字之间的运算没有什么区别,但是乘法就不一样了。
向量的乘法有几种:
1、向量与数的乘法,和数与数的乘法一样;
2、向量与向量的数量积,两个向量的数量积结果是一个数,也满足交换律和结合律
3、向量与向量的向量积,它们的积仍然是一个向量,满足结合律但不满足交换律
4、向量与向量的混合积,就是数量积与向量积的混合运算
向量没有除法运算,没有幂的运算(切记a^2只是数量积a·a的一个简写,千万不要把它看成平方运算!)
多个向量相做乘法运算必须加括号,像a·b·c这样的写法没有意义,而且括号还不能乱加!
(ab)表示数量积,[ab]表示向量积,(abc)表示混合积,(abcd)无意义。

阅读全文

与和向量的运算法则相关的资料

热点内容
ubuntu压缩zip 浏览:2
vigenere算法的方法是什么 浏览:666
pdf保护破解 浏览:341
仿微信聊天系统源码广州公司 浏览:106
怎么查看我的世界服务器日志 浏览:430
怎么从程序员走到成功 浏览:824
把软件放入文件夹中如何移出 浏览:209
红包源码企业即时聊天软件 浏览:581
xp安装python 浏览:10
西门子参数编程读取半径值 浏览:403
洗首饰解压小视频 浏览:966
01背包问题的算法解决 浏览:373
sd卡放哪个文件夹 浏览:301
解释器模式java 浏览:104
android垂直自动滚动条 浏览:153
计算器java小程序 浏览:27
java的简称 浏览:68
云服务器公网ip地址 浏览:581
php对数据库操作 浏览:237
java爬图片 浏览:868