⑴ 算法是多余的吗
参考出处:http://blog.csdn.net/ctu_85/archive/2008/05/11/2432736.aspx
一、什么是算法
算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。算法常常含有重复的步骤和一些比较或逻辑判断。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。时间复杂度用“O(数量级)”来表示,称为“阶”。常见的时间复杂度有: O(1)常数阶;O(log2n)对数阶;O(n)线性阶;O(n2)平方阶。
算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
[font class="Apple-style-span" style="font-weight: bold;" id="bks_etfhxykd"]算法 Algorithm [/font]
算法是在有限步骤内求解某一问题所使用的一组定义明确的规则。通俗点说,就是计算机解题的过程。在这个过程中,无论是形成解题思路还是编写程序,都是在实施某种算法。前者是推理实现的算法,后者是操作实现的算法。
一个算法应该具有以下五个重要的特征:
1、有穷性: 一个算法必须保证执行有限步之后结束;
2、确切性: 算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
算法的设计要求
1)正确性(Correctness)
有4个层次:
A.程序不含语法错误;
B.程序对几组输入数据能够得出满足规格要求的结果;
C.程序对精心选择的、典型的、苛刻的、带有刁难性的几组输入数据能够得出满足规格要求的结果;
D.程序对一切合法的输入数据都能产生满足规格要求的结果。
2)可读性(Readability)
算法的第一目的是为了阅读和交流;
可读性有助于对算法的理解;
可读性有助于对算法的调试和修改。
3)高效率与低存储量
处理速度快;存储容量小
时间和空间是矛盾的、实际问题的求解往往是求得时间和空间的统一、折中。
算法的描述 算法的描述方式(常用的)
算法描述 自然语言
流程图 特定的表示算法的图形符号
伪语言 包括程序设计语言的三大基本结构及自然语言的一种语言
类语言 类似高级语言的语言,例如,类PASCAL、类C语言。
算法的评价 算法评价的标准:时间复杂度和空间复杂度。
1)时间复杂度 指在计算机上运行该算法所花费的时间。用“O(数量级)”来表示,称为“阶”。
常见的时间复杂度有: O(1)常数阶;O(logn)对数阶;O(n)线性阶;O(n^2)平方阶
2)空间复杂度 指算法在计算机上运行所占用的存储空间。度量同时间复杂度。
时间复杂度举例
(a) X:=X+1 ; O(1)
(b) FOR I:=1 TO n DO
X:= X+1; O(n)
(c) FOR I:= 1 TO n DO
FOR J:= 1 TO n DO
X:= X+1; O(n^2)
“算法”一词最早来自公元 9世纪 波斯数学家比阿勒·霍瓦里松的一本影响深远的着作《代数对话录》。20世纪的 英国 数学家 图灵 提出了着名的图灵论点,并抽象出了一台机器,这台机器被我们称之为 图灵机 。图灵的思想对算法的发展起到了重要的作用。
算法是 计算机 处理信息的本质,因为 计算机程序 本质上是一个算法,告诉计算机确切的步骤来执行一个指定的任务,如计算职工的薪水或打印学生的成绩单。 一般地,当算法在处理信息时,数据会从输入设备读取,写入输出设备,可能保存起来以供以后使用。
这是算法的一个简单的例子。
我们有一串随机数列。我们的目的是找到这个数列中最大的数。如果将数列中的每一个数字看成是一颗豆子的大小 可以将下面的算法形象地称为“捡豆子”:
首先将第一颗豆子(数列中的第一个数字)放入口袋中。
从第二颗豆子开始检查,直到最后一颗豆子。如果正在检查的豆子比口袋中的还大,则将它捡起放入口袋中,同时丢掉原先的豆子。 最后口袋中的豆子就是所有的豆子中最大的一颗。
下面是一个形式算法,用近似于 编程语言 的 伪代码 表示
给定:一个数列“list",以及数列的长度"length(list)" largest = list[1] for counter = 2 to length(list): if list[counter] > largest: largest = list[counter] print largest
符号说明:
= 用于表示赋值。即:右边的值被赋予给左边的变量。
List[counter] 用于表示数列中的第 counter 项。例如:如果 counter 的值是5,那么 List[counter] 表示数列中的第5项。
<= 用于表示“小于或等于”。
二、算法设计的方法
1.递推法
递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。设要求问题规模为N的解,当N=1时,解或为已知,或能非常方便地得到解。能采用递推法构造算法的问题有重要的递推性质,即当得到问题规模为i-1的解后,由问题的递推性质,能从已求得的规模为1,2,…,i-1的一系列解,构造出问题规模为I的解。这样,程序可从i=0或i=1出发,重复地,由已知至i-1规模的解,通过递推,获得规模为i的解,直至得到规模为N的解。
【问题】 阶乘计算
问题描述:编写程序,对给定的n(n≤100),计算并输出k的阶乘k!(k=1,2,…,n)的全部有效数字。
由于要求的整数可能大大超出一般整数的位数,程序用一维数组存储长整数,存储长整数数组的每个元素只存储长整数的一位数字。如有m位成整数N用数组a[ ]存储:
N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100
并用a[0]存储长整数N的位数m,即a[0]=m。按上述约定,数组的每个元素存储k的阶乘k!的一位数字,并从低位到高位依次存于数组的第二个元素、第三个元素……。例如,5!=120,在数组中的存储形式为:
3 0 2 1 ……
首元素3表示长整数是一个3位数,接着是低位到高位依次是0、2、1,表示成整数120。
计算阶乘k!可采用对已求得的阶乘(k-1)!连续累加k-1次后求得。例如,已知4!=24,计算5!,可对原来的24累加4次24后得到120。细节见以下程序。
# include <stdio.h>
# include <malloc.h>
......
2.递归
递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。
能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。
【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。
斐波那契数列为:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (当n>1时)。
写成递归函数有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n-2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。
在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。
在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。
由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。
【问题】 组合问题
问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。
【程序】
# include <stdio.h>
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i--)
{ a[k]=i;
if (k>1)
comb(i-1,k-1);
else
{ for (j=a[0];j>0;j--)
printf(“%4d”,a[j]);
printf(“\n”);
}
}
}
void main()
{ a[0]=3;
comb(5,3);
}
3.回溯法
回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。
【问题】 组合问题
问题描述:找出从自然数1,2,…,n中任取r个数的所有组合。
采用回溯法找问题的解,将找到的组合以从小到大顺序存于a[0],a[1],…,a[r-1]中,组合的元素满足以下性质:
(1) a[i+1]>a,后一个数字比前一个大;
(2) a-i<=n-r+1。
按回溯法的思想,找解过程可以叙述如下:
首先放弃组合数个数为r的条件,候选组合从只有一个数字1开始。因该候选解满足除问题规模之外的全部条件,扩大其规模,并使其满足上述条件(1),候选组合改为1,2。继续这一过程,得到候选组合1,2,3。该候选解满足包括问题规模在内的全部条件,因而是一个解。在该解的基础上,选下一个候选解,因a[2]上的3调整为4,以及以后调整为5都满足问题的全部要求,得到解1,2,4和1,2,5。由于对5不能再作调整,就要从a[2]回溯到a[1],这时,a[1]=2,可以调整为3,并向前试探,得到解1,3,4。重复上述向前试探和向后回溯,直至要从a[0]再回溯时,说明已经找完问题的全部解。按上述思想写成程序如下:
【程序】
# define MAXN 100
int a[MAXN];
void comb(int m,int r)
{ int i,j;
i=0;
a=1;
do {
if (a-i<=m-r+1
{ if (i==r-1)
{ for (j=0;j<r;j++)
printf(“%4d”,a[j]);
printf(“\n”);
}
a++;
continue;
}
else
{ if (i==0)
return;
a[--i]++;
}
} while (1)
}
main()
{ comb(5,3);
}
4.贪婪法
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
例如平时购物找钱时,为使找回的零钱的硬币数最少,不考虑找零钱的所有各种发表方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,当不足大面值币种的金额时才去考虑下一种较小面值的币种。这就是在使用贪婪法。这种方法在这里总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如只有面值分别为1、5和11单位的硬币,而希望找回总额为15单位的硬币。按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解应是3个5单位面值的硬币。
【问题】 装箱问题
问题描述:装箱问题可简述如下:设有编号为0、1、…、n-1的n种物品,体积分别为v0、v1、…、vn-1。将这n种物品装到容量都为V的若干箱子里。约定这n种物品的体积均不超过V,即对于0≤i<n,有0<vi≤V。不同的装箱方案所需要的箱子数目可能不同。装箱问题要求使装尽这n种物品的箱子数要少。
若考察将n种物品的集合分划成n个或小于n个物品的所有子集,最优解就可以找到。但所有可能划分的总数太大。对适当大的n,找出所有可能的划分要花费的时间是无法承受的。为此,对装箱问题采用非常简单的近似算法,即贪婪法。该算法依次将物品放到它第一个能放进去的箱子中,该算法虽不能保证找到最优解,但还是能找到非常好的解。不失一般性,设n件物品的体积是按从大到小排好序的,即有v0≥v1≥…≥vn-1。如不满足上述要求,只要先对这n件物品按它们的体积从大到小排序,然后按排序结果对物品重新编号即可。装箱算法简单描述如下:
{ 输入箱子的容积;
输入物品种数n;
按体积从大到小顺序,输入各物品的体积;
预置已用箱子链为空;
预置已用箱子计数器box_count为0;
for (i=0;i<n;i++)
{ 从已用的第一只箱子开始顺序寻找能放入物品i 的箱子j;
if (已用箱子都不能再放物品i)
{ 另用一个箱子,并将物品i放入该箱子;
box_count++;
}
else
将物品i放入箱子j;
}
}
上述算法能求出需要的箱子数box_count,并能求出各箱子所装物品。下面的例子说明该算法不一定能找到最优解,设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。按上述算法计算,需三只箱子,各箱子所装物品分别为:第一只箱子装物品1、3;第二只箱子装物品2、4、5;第三只箱子装物品6。而最优解为两只箱子,分别装物品1、4、5和2、3、6。
若每只箱子所装物品用链表来表示,链表首结点指针存于一个结构中,结构记录尚剩余的空间量和该箱子所装物品链表的首指针。另将全部箱子的信息也构成链表。以下是按以上算法编写的程序。
}
5.分治法
任何一个可以用计算机求解的问题所需的计算时间都与其规模N有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算;n=2时,只要作一次比较即可排好序;n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
如果原问题可分割成k个子问题(1<k≤n),且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
分治法所能解决的问题一般具有以下几个特征:
(1)该问题的规模缩小到一定的程度就可以容易地解决;
(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;
(3)利用该问题分解出的子问题的解可以合并为该问题的解;
(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
分治法在每一层递归上都有三个步骤:
(1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
(2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
(3)合并:将各个子问题的解合并为原问题的解。
6.动态规划法
经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。
为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。以下先用实例说明动态规划方法的使用。
【问题】 求两字符序列的最长公共字符子序列
问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。
考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:
(1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;
(2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;
(3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。
这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。
代码如下:
# include <stdio.h>
# include <string.h>
# define N 100
char a[N],b[N],str[N];
int lcs_len(char *a, char *b, int c[ ][ N])
{ int m=strlen(a), n=strlen(b), i,j;
for (i=0;i<=m;i++) c[0]=0;
for (i=0;i<=n;i++) c[0]=0;
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
if (a[i-1]==b[j-1])
c[j]=c[i-1][j-1]+1;
else if (c[i-1][j]>=c[j-1])
c[j]=c[i-1][j];
else
c[j]=c[j-1];
return c[m][n];
}
char *buile_lcs(char s[ ],char *a, char *b)
{ int k, i=strlen(a), j=strlen(b);
k=lcs_len(a,b,c);
s[k]=’’;
while (k>0)
if (c[j]==c[i-1][j]) i--;
else if (c[j]==c[j-1]) j--;
else { s[--k]=a[i-1];
i--; j--;
}
return s;
}
void main()
{ printf (“Enter two string(<%d)!\n”,N);
scanf(“%s%s”,a,b);
printf(“LCS=%s\n”,build_lcs(str,a,b));
}
⑵ 在windows XP中,若要同时运行两个程序,则( )
A:两个程序可以同时占用同一个处理器。
因为这两个程序都在第行,所以它们都使用个处理器,所以它们必须都是。这只是一个份额的问题。
同时,运行程序不能放弃,放弃就是退出其中的一个。只要不是当前窗口,那么就是年最后一次运行,运行就会被占用。
这是当前运行的程序,也就是说,A先运行,B后运行,B是当前的窗口,那么B就会成为优先占用的处理,A是在占用并停留,D也是如此,错误的。
(2)算法是不能放弃的扩展阅读:
注意事项:
程序算法有以下个特征:
1.差:算法必须是步才能保证有限步的结束。
2.可行性:算法绝对可行。即使算法在数学上是可行的,如果程序在实际应用中不能执行,那么算法也是不可行的。
3.准确性:算法的每一步都必须有明确的含义。
4.输入:一个算法必须有0个或多个输入。
5.输出:一个算法必须有一个或多个输出。
⑶ 算法难学么
真正的算法学习起来,存在一定的难度的,坚持很重要,毕竟里面的东西的学习,需要耐心去看不能只是三分钟的热度基本学不会,毕竟算法的学习需要注意力高度集中,不停的烧脑学习。不适合学习一段时间就轻易放弃的人,所以没点毅力根本就学不好算法,更加谈不上学习编程了。
以上资料仅供参考。
⑷ 如何看待 SPFA 算法已死这种说法
看待SPFA算法已死这种说法:
对SPFA的一个很直观的理解就是由无权图的BFS转化而来。在无权图中,BFS首先到达的顶点所经历的路径一定是最短路(也就是经过的最少顶点数),所以此时利用数组记录节点访问可以使每个顶点只进队一次,但在带权图中,最先到达的顶点所计算出来的路径不一定是最短路。
一个解决方法是放弃数组,此时所需时间自然就是指数级的,所以我们不能放弃数组,而是在处理一个已经在队列中且当前所得的路径比原来更好的顶点时,直接更新最优解。
定理:
只要最短路径存在,上述SPFA算法必定能求出最小值。证明:每次将点放入队尾,都是经过松弛操作达到的。换言之,每次的优化将会有某个点v的最短路径估计值d[v]变小。
所以算法的执行会使d越来越小。由于我们假定图中不存在负权回路,所以每个结点都有最短路径值。因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。
⑸ 懂算法的人应该知道怎么做人生选择
每年一到要找工作的时候,我就能收到很多人给我发来的邮件,总是问我怎么选择他们的offer,去腾讯还是去豆瓣,去外企还是去国内的企业,去创业还是去考研,来北京还是回老家,该不该去创新工场?该不该去thoughtworks?……等等,等等。今年从7月份到现在,我收到并回复了60多封这样的邮件。我更多帮他们整理思路,帮他们明白自己最想要的是什么。
我深深地发现,对于我国这样从小被父母和老师安排各种事情长大的人,当有一天,父母和老师都跟不上的时候,我们几乎完全不知道怎么去做选择。
几个例子
当我们在面对各种对选择的影响因子的时候,如:城市,公司规模,公司性质,薪水,项目,户口,技术,方向,眼界…… 你总会发现,你会在几个公司中纠结一些东西,举几个例子:
某网友和我说,他们去上海腾讯,因为腾讯的规模很大,但却发现薪水待遇没有豆瓣高(低的还不是一点),如果以后要换工作的话,起薪点直接关系到了以后的高工资。我说那就去豆瓣吧,他说豆瓣在北京,污染那么严重,又没有户口,生存环境不好。我说去腾讯吧,他说腾讯最近组织调整,不稳定。我说那就去豆瓣吧,慢公司,发展很稳当。他说,豆瓣的盈利不清楚,而且用Python,自己不喜欢。我说,那就去腾讯吧,……
还有一网友和我说,他想回老家,因为老家的人脉关系比较好,能混得好。但又想留在大城市,因为大城市可以开眼界。
另一网友和我说,他想进外企,练练英语,开开眼界,但是又怕在外企里当个螺丝钉,想法得不到实施。朋友拉他去创业,觉得创业挺好的,锻炼大,但是朋友做的那个不知道能不能做好。
还有一网友在创新工场的某团队和考研之间抉择,不知道去创新工场行不行,觉得那个项目一般,但是感觉那个团队挺有激情的,另一方面觉得自己的学历还不够,读个研应该能找到更好的工作。
还有一些朋友问题我应该学什么技术?不应该学什么技术?或是怎么学会学得最快,技术的路径应该是什么?有的说只做后端不做前端,有的说,只做算法研究,不做工程,等等,等等。因为他们觉得人生有限,术业有专攻。
等等,等等……
我个人觉得,如果是非计算机科班出生的人不会做选择,不知道怎么走也罢了,但是我们计算机科班出生的人是学过算法的,懂算法的人应该是知道怎么做选择的。
你不可能要所有的东西,所以你只能要你最重要的东西,你要知道什么东西最重要,你就需要对你心内的那些欲望和抱负有清楚的认识,不然,你就会在纠结中度过。
所以,在选择中纠结的人有必要参考一下排序算法。
首先,你最需要参考的就是“冒泡排序”——这种算法的思路就是每次冒泡出一个最大的数。所以,你有必要问问你自己,面对那些影响你选择的因子,如果你只能要一个的话,你会要哪个?而剩下的都可以放弃。于是,当你把最大的数,一个一个冒泡出来的时候,并用这个决策因子来过滤选项的时候,你就能比较容易地知道知道你应该选什么了。这个算法告诉我们,人的杂念越少,就越容易做出选择。
好吧,可能你已茫然到了怎么比较两个决策因子的大小,比如:你分不清楚,工资>业务前景吗?业务前景>能力提升吗?所以你完全没有办法进行冒泡法。那你,你不妨参考一个“快速排序”的思路——这个算法告诉我们,我们一开始并不需要找到最大的数,我们只需要把你价值观中的某个标准拿出来,然后,把可以满足这个价值的放到右边,不能的放到左边去。比如,你的标准是:工资大于5000元&&业务前景长于3年的公司,你可以用这个标准来过滤你的选项。然后,你可以再调整这个标准再继续递归下去。这个算法告诉我们,我们的选择标准越清晰,我们就越容易做出选择。
这是排序算法中最经典的两个算法了,面试必考。相信你已烂熟于心中了。所以,我觉得你把这个算法应用于你的人生选择也应该不是什么问题。关于在于,你是否知道自己想要的是什么?
排序算法的核心思想就是,让你帮助你认清自己最需要的是什么,认清自己最想要的是什么,然后根据这个去做选择。
所谓贪婪算法,是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择(注意:是当前状态下),从而希望导致结果是最好或最优的算法。贪婪算法最经典的一个例子就是哈夫曼编码。
对于人类来说,一般人在行为处事的时候都会使用到贪婪算法,
比如在找零钱的时候,如果要找补36元,我们一般会按这样的顺序找钱:20元,10元,5元,1元。
或者我们在过十字路口的时候,要从到对角线的那个街区时,我们也会使用贪婪算法——哪边的绿灯先亮了我们就先过到那边去,然后再转身90度等红灯再过街。
这样的例子有很多。对于选择中,大多数人都会选用贪婪算法,因为这是一个比较简单的算法,未来太复杂了,只能走一步看一步,在当前的状况下做出最利于自己的判断和选择即可。
有的人会贪婪薪水,有的人会贪婪做的项目,有的人会贪婪业务,有的人会贪婪职位,有的人会贪婪自己的兴趣……这些都没什么问题。贪婪算法并没有错,虽然不是全局最优解,但其可以让你找到局部最优解或是次优解。其实,有次优解也不错了。贪婪算法基本上是一种急功近利的算法,但是并不代表这种算法不好,如果贪婪的是一种长远和持续,又未尝不可呢?。
但是我们知道,对于大部分的问题,贪婪法通常都不能找出最优解,因为他们一般没有测试所有可能的解。因为贪婪算法是一种短视的行为,只会跟据当前的形式做判断,也就是过早做决定,因而没法达到最佳解。
动态规划和贪婪算法的最大不同是,贪婪算法做出选择,不能在过程优化。动态规划则会保存以前的运算结果,并根据以前的结果对当前进行选择,会动态优化功能。
动态规划算法至少告诉我们两个事:
1)承前启后非常重要,当你准备去做遍历的时候,你的上次的经历不但能开启你以后的经历,而且还能为后面的经历所用。你的每一步都没有浪费。
2)是否可以回退也很重要。这意思是——如果你面前有两个选择,一个是A公司一个是B公司,如果今天你选了A公司,并不是你完全放弃了B公司。而是,你知道从A公司退出来去B公司,会比从B公司退出来去A公司要容易一些。
比如说:你有两个offer,一个是Yahoo,一个是Bai,上述的第一点会让我们思考,我以前的特长和能力更符合Yahoo还是Bai?而Yahoo和Bai谁能给我开启更大的平台?上述的第二点告诉我们,是进入Yahoo后如果没有选好,是否还能再选择Bai公司?还是进入Bai公司后能容易回退到Yahoo公司?
最短路径是一个Greedy + DP的算法。相当经典。这个算法的大意如下:
1)在初始化的时候,所有的结点都和我是无穷大,默认是达不到的。
2)从离自己最近的结点开始贪婪。
3)走过去,看看又能到达什么样的结点,计算并更新到所有目标点的距离。
4)再贪婪与原点最短的结点,如此反复。
这个算法给我们带来了一些这样的启示:
有朋友和我说过他想成为一个架构师,或是某技术领域的专家,并会踏踏实实的向这个目标前进,永不放弃。我还是鼓励了他,但我也告诉他了这个着名的算法,我说,这个算法告诉你,架构师或某领域的专家对你来说目前的距离是无穷大,他们放在心中,先看看你能够得着的东西。所谓踏实,并不是踏踏实实追求你的目标,而是踏踏实实把你够得着看得见的就在身边的东西干好。我还记得我刚参加工作,从老家出来的时候,从来没有想过要成为一个技术牛人,也从来没有想过我的博客会那么的有影响力,在做自己力所能及,看得见摸得着的事情,我就看见什么技术就学什么,学着学着就知道怎么学更轻松,怎么学更扎实,这也许就是我的最短路径。
有很多朋友问我要不要学C++,或是问我学Python还是学Ruby,是不是不用学前端,等等。这些朋友告诉我,他们不可能学习多个语言,学了不用也就忘了,而且术业有专攻。这并没有什么不对的,只是我个人觉得,学习一个东西没有必要只有两种状态,一种是不学,另一种是精通。了解一个技术其实花不了多少时间,我学C++的目的其实是为了更懂Java,学TCP/IP协议其实是为了更懂Socket编程,很多东西都是连通和相辅相成的,学好了C/C++/Unix/TCP等这些基础技术后,你会发现到达别的技术路径一下缩短了。
这就好像这个算法一样,算法效率不高,也许达到你的目标,你在一开始花了很长时间,遍历了很多地方,但是,这也许这就是你的最短路径(比起你达不到要好得多)。
你根本没有办法能得到所有你想得到的东西,任何的选择都意味着放弃——当你要去获得一个东西的时候,你总是需要放弃一些东西。人生本来就是一个跷跷板,一头上,另一头必然下。这和我们做软件设计或算法设计一样,用时间换空间,用空间换时间,还有CAP理论,总是有很多的Trade-Off,正如这个短语的原意一样——你总是要用某种东西去交易某种东西。
我们都在用某种东西在交易我们的未来,有的人用自己的努力,有的人用自己的思考,有的人用自己的年轻,有的人用自己的自由,有的人用自己的价值观,有的人用自己的道德…… …… 有的人在交换金钱,有的人在交换眼界,有的人在交换经历,有的人在交换地位,有的人在交换能力,有的人在交换自由,有的人在交换兴趣,有的人在交换虚荣心,在交换安逸享乐…… ……
每个人有每个人的算法,每个算法都有每个算法的purpose,就算大家在用同样的算法,但是每个人算法中的那些变量、开关和条件都不一样,得到的结果也不一样。我们就是生活在Matrix里的一段程序,我们每个人的算法决定着我们每个人的选择,我们的选择决定了我们的人生
⑹ 在编程过程中,算法真心好难啊。我都差点崩溃了,求指点
,不要背课堂上老师讲的算法, 要学会去理解它,什么意思呢?我举个例子.就是自己把学过的算法(数据结构)自己写出来,别管是不是学过.当你写出来后,肯定会掌握,写的同时切记一边思考一边写.
或者,像你现在这样的情况,你在搞一个小型编译器前,有没对这个程序做些准备工作?比如有什么功能? 功能是什么? 功能要怎么实现? 实现的时候需要些什么方法. 这些就是算法了,然后你基于这些准备工作,去找书,大把算法可以供你参考,这也是学习的一种途径.
本人自学,都是这样一步一步走来.