导航:首页 > 源码编译 > 普里姆算法算法的具体思路

普里姆算法算法的具体思路

发布时间:2022-05-24 04:51:39

‘壹’ 普里姆算法是什么

在计算机科学中,普里姆(也称为Jarník's)算法是一种贪婪算法,它为加权的无向图找到一个最小生成树 。

相关简介:

这意味着它找到边的一个子集,能够形成了一个包括所有顶点的树,其中在树中所有边的权重总和最小。该算法通过从任意起始顶点开始一次给树增加一个顶点来操作,在每个步骤中添加从树到另一个顶点的花费最小的可能的连接。

该算法由捷克数学家沃伊茨奇·贾尼克于1930年开发后,后来在1957年被计算机科学家罗伯特·普里姆,以及在1959年被艾兹赫尔·戴克斯特拉重新发现和重新出版。因此,它有时也被称为Jarník算法,普里姆-jarník算法。普里姆-迪克斯特拉算法或者DJP算法。

这个问题的其他众所周知的算法包括克鲁斯卡尔算法和 Borvka's算法。这些算法在一个可能的非连通图中找到最小生成森林;相比之下,普里姆算法最基本的形式只能在连通图中找到最小生成树。然而,为图中的每个连通分量单独运行普里姆算法,也可以用于找到最小生成森林。

就渐近时间复杂度而言,这三种算法对于稀疏图来说速度相同,但比其他更复杂的算法慢。然而,对于足够密集的图,普里姆算法可以在线性时间内运行,满足或改进其他算法的时间限制。

‘贰’ 普里姆算法

可以这么理解:因为最小生成树是包含所有顶点的所以开始lowcost先储存到第一个点的所有值,然后执行下面算法,找到最小值并记录是第几个点,比如说这个点是3,这样有了一条1-3得道路已经确定,现在从3出发找从3出发到其他顶点的路径,如果这个从3出发到达的路径长度比从1出发的短,则更新lowcost,这样使得lowcost保存一直到达该顶点的最短路径。比如1-4是5,3-4是4,则lowcost从原来的5被改为4。

‘叁’ 普里姆算法的相关信息

1)算法的基本思想:
普里姆算法的基本思想:普里姆算法是另一种构造最小生成树的算法,它是按逐个将顶点连通的方式来构造最小生成树的。
从连通网络N = { V, E }中的某一顶点u0出发,选择与它关联的具有最小权值的边(u0, v),将其顶点加入到生成树的顶点集合U中。以后每一步从一个顶点在U中,而另一个顶点不在U中的各条边中选择权值最小的边(u, v),把该边加入到生成树的边集TE中,把它的顶点加入到集合U中。如此重复执行,直到网络中的所有顶点都加入到生成树顶点集合U中为止。
假设G=(V,E)是一个具有n个顶点的带权无向连通图,T(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,则构造G的最小生成树T的步骤如下:
(1)初始状态,TE为空,U={v0},v0∈V;
(2)在所有u∈U,v∈V-U的边(u,v)∈E中找一条代价最小的边(u′,v′)并入TE,同时将v′并入U;
重复执行步骤(2)n-1次,直到U=V为止。
在普里姆算法中,为了便于在集合U和(V-U)之间选取权值最小的边,需要设置两个辅助数组closest和lowcost,分别用于存放顶点的序号和边的权值。对于每一个顶点v∈V-U,closest[v]为U中距离v最近的一个邻接点,即边(v,closest[v])是在所有与顶点v相邻、且其另一顶点j∈U的边中具有最小权值的边,其最小权值为lowcost[v],即lowcost[v]=cost[v][closest[v]],采用邻接表作为存储结构:
设置一个辅助数组closedge[]:
lowcost域存放生成树顶点集合内顶点到生成树外各顶点的各边上的当前最小权值;
adjvex域记录生成树顶点集合外各顶点距离集合内哪个顶点最近(即权值最小)。
应用Prim算法构造最小生成树的过程:

‘肆’ 最小生成树 普里姆算法有问

普里姆算法构造最小生成树算法的思想是:选择一个结点,然后从这个结点开始,选择权值最小的边,用一条边连接,然后再以前面的那个结点开始,和你连接的那个结点作为根节点,再选择权值最小的边进行连接。
对权值给出解释:以上图为例,权值就是你第一个图那几条边(弧)上,所标的数字。
对楼主所提出的问题:并不是连接那圆圈中最小的圆圈,如果没错的话,那圆圈中的数字表示的是V1---V6六个顶点,并不是代表数字,以3和6为顶点,找权值最小边,显然6——4为最小,即权值为2,顶点364相连接的时候各以364为顶点寻找最小边,应该先从6连接到2,那么现在加入顶点的为3642顶点,现在以3642为顶点寻找最小边,应该从2连接到1,现在被连接的有63421,在以63421为顶点寻找最小边
出现了问题:如果以5为权值的话,无论从2连接到4还是从3连接到4都出现了环,当然我们知道数中是不能出现环的,所以寻找次小的,剩余5与13之间权值最小为13.所以将1连接5,即得到最小生成树。
楼主可以按照我说的在纸上画一下试试
从6连接到3因为有前提条件:从顶点V3开始用普里姆方法求其最小生成数,可见是从顶点3连接到6,而不是从6连接到3
希望可以解决楼主的疑惑,谢谢!

‘伍’ 什么是Prim算法

Prim算法
Prim算法用于求无向图的最小生成树

设图G =(V,E),其生成树的顶点集合为U。
①、把v0放入U。
②、在所有u∈U,v∈V-U的边(u,v)∈E中找一条最小权值的边,加入生成树。
③、把②找到的边的v加入U集合。如果U集合已有n个元素,则结束,否则继续执行②。
其算法的时间复杂度为O(n^2)

Prim算法实现:
(1)集合:设置一个数组set[i](i=0,1,..,n-1),初始值为 0,代表对应顶点不在集合中(注意:顶点号与下标号差1)
(2)图用邻接阵表示,路径不通用无穷大表示,在计算机中可用一个大整数代替。

参考程序

/* Prim.c

Copyright (c) 2002, 2006 by ctu_85

All Rights Reserved.

*/

/* The impact of the situation of articulation point exists can be omitted in Prim algorithm but not in Kruskal algorithm */

#include "stdio.h"

#define maxver 10

#define maxright 100

int main()

{

int G[maxver][maxver],in[maxver]=,path[maxver][2];

int i,j,k,min=maxright;

int v1,v2,num,temp,status=0,start=0;

restart:

printf("Please enter the number of vertex(s) in the graph:\n");

scanf("%d",&num);

if(num>maxver||num<0)

{

printf("Error!Please reinput!\n");

goto restart;

}

for(j=0;j<num;j++)

for(k=0;k<num;k++)

{

if(j==k)

G[j][k]=maxright;

else

if(j<k)

{

re:

printf("Please input the right between vertex %d and vertex %d,if no edge exists please input -1:\n",j+1,k+1);

scanf("%d",&temp);

if(temp>=maxright||temp<-1)

{

printf("Invalid input!\n");

goto re;

}

if(temp==-1)

temp=maxright;

G[j][k]=G[k][j]=temp;

}

}

for(j=0;j<num;j++)

{

status=0;

for(k=0;k<num;k++)

if(G[j][k]<maxright)

{

status=1;

break;

}

if(status==0)

break;

}

do

{

printf("Please enter the vertex where Prim algorithm starts:");

scanf("%d",&start);

}while(start<0||start>num);

in[start-1]=1;

for(i=0;i<num-1&&status;i++)

{

for(j=0;j<num;j++)

for(k=0;k<num;k++)

if(G[j][k]<min&&in[j]&&(!in[k]))

{

v1=j;

v2=k;

min=G[j][k];

}

if(!in[v2])

{

path[i][0]=v1;

path[i][1]=v2;

in[v1]=1;

in[v2]=1;

min=maxright;

}

}

if(!status)

printf("We cannot deal with it because the graph is not connected!\n");

else

{

for(i=0;i<num-1;i++)

printf("Path %d:vertex %d to vertex %d\n",i+1,path[i][0]+1,path[i][1]+1);

}

return 1;

}

Prim算法。

设图G =(V,E),其生成树的顶点集合为U。

①、把v0放入U。

②、在所有u∈U,v∈V-U的边(u,v)∈E中找一条最小权值的边,加入生成树。

③、把②找到的边的v加入U集合。如果U集合已有n个元素,则结束,否则继续执行②。

其算法的时间复杂度为O(n^2)

参考程序

//Prim 算法 读入顶点数(n)、边数(m),边的起始点和权值 用邻接矩阵储存

//例如

//7 12 (7个顶点12条边)

//1 2 2

//1 4 1

//1 3 4

//2 4 3

//2 5 10

//3 4 2

//4 5 7

//3 6 5

//4 6 8

//4 7 4

//5 7 6

//6 7 1

#include <stdio.h>

#include <string.h>

int main()

{

int m , n;

int a[201][201] , mark[201] , pre[201] , dist[201];

int s , t , w;

int i , j , k , min , tot;

freopen("Prim.txt" , "r" , stdin);

//读入数据

memset(a , 0 , sizeof(a));

scanf("%d %d" , &n , &m);

for (i = 0; i < m; i ++)

{

scanf("%d %d %d" , &s , &t , &w);

a[s][t] = w; a[t][s] = w;

}

//赋初值

memset(mark , 0 , sizeof(mark));

memset(pre , 0 , sizeof(pre));

memset(dist , 9999 , sizeof(dist));

dist[1] = 0;

//Prim

for (i = 1; i <= n; i ++)

{

min = 9999; k = 0;

for (j = 1; j <= n; j ++)

if ((mark[j] == 0) && (dist[j] < min)) {min = dist[j]; k = j;}

if (k == 0) break;

mark[k] = 1;

for (j = 1; j <= n; j ++)

if ((mark[j] == 0) && (a[k][j] < dist[j]) && (a[k][j] > 0))

{

dist[j] = a[k][j];

pre[j] = k;

}

}

tot = 0;

for (i = 1; i <= n; i ++) tot += dist[i];

printf("%d\n" , tot);

return 0;

}

‘陆’ prim算法是什么

普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。


算法的发展:

该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。

‘柒’ 什么事普里姆算法

是图的最小生成树的一种构造算法。 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,TV 是 WN 上最小生成树中顶点的集合,TE 是最小生成树中边的集合。显然,在算法执行结束时,TV=V,而 TE 是 E 的一个子集。在算法开始执行时,TE 为空集,TV 中只有一个顶点,因此,按普里姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有 n-1条边为止。 补充:closedge的类型: struct { VertexData Adjvex; int Lowcost; }closedge[MAX_VERTEX_NUM]; //求最小生成树的辅助数组 void MiniSpanTree_P( MGraph G, VertexType u ) { //用普里姆算法从顶点u出发构造网G的最小生成树 k = LocateVex ( G, u ); closedge[k].Lowcost = 0; // 初始,U={u} for ( j=0; j<G.vexnum; ++j ) // 辅助数组初始化 if (j!=k) closedge[j] = { u, G.arcs[k][j] }; for ( i=0; i<G.vexnum; ++i ) { 继续向生成树上添加顶点; } k = minimum(closedge); // 求出加入生成树的下一个顶点(k) printf(closedge[k].Adjvex, G.vexs[k]); // 输出生成树上一条边 closedge[k].Lowcost = 0; // 第k顶点并入U集 for (j=0; j<G.vexnum; ++j) //修改其它顶点的最小边 if ( G.arcs[k][j] < closedge[j].Lowcost ) closedge[j] = { G.vexs[k], G.arcs[k][j] }; }

‘捌’ 什么是普里姆算法

构造最小生成树用的,使用贪心策 略。prime算法的基本思想 1.清空生成树,任取一个顶点加入 生成树 2.在那些一个端点在生成树里,另 一个端点不在生成树里的边中,选 取一条权最小的边,将它和另一个 端点加进生成树 3.重复步骤2,直到所有的顶点都 进入了生成树为止,此时的生成树 就是最小生成树

‘玖’ 普里姆算法的普里姆算法的实现

为了便于在两个顶点集U和V-U之间选择权最小的边,建立了两个辅助数组closest和lowcost,它们记录从U到V-U具有最小权值的边,对于某个j∈V-U,closest[j]存储该边依附的在U中的顶点编号,lowcost[j]存储该边的权值。
为了方便,假设图G采用邻接矩阵g存储,对应的Prim(g,v)算法如下:
void Prim(MatGraph g,int v) //输出求得的最小生树的所有边
{ int lowcost[MAXVEX]; //建立数组lowcost
int closest[MAXVEX]; //建立数组closest
int min,i,j,k;
for (i=0;i<g.n;i++) //给lowcost[]和closest[]置初值
{ lowcost[i]=g.edges[v][i];
closest[i]=v;
}
for (i=1;i<g.n;i++) //构造n-1条边
{ min=INF; k=-1;
for (j=0;j<g.n;j++) //在(V-U)中找出离U最近的顶点k
if (lowcost[j]!=0 && lowcost[j]<min)
{ min=lowcost[j];
k=j; //k为最近顶点的编号
}
printf( 边(%d,%d),权值为%d ,closest[k],k,min);
lowcost[k]=0; //标记k已经加入U
for (j=0;j<g.n;j++) //修正数组lowcost和closest
if (g.edges[k][j]!=0 && g.edges[k][j]<lowcost[j])
{ lowcost[j]=g.edges[k][j];
closest[j]=k;
}
}
}
普里姆算法中有两重for循环,所以时间复杂度为O(n2),其中n为图的顶点个数。由于与e无关,所以普里姆算法特别适合于稠密图求最小生成树。

‘拾’ Prim算法的实现过程

G=(V,E)
①初始化:读入的数据用邻接矩阵x存储,一个一维布尔型数组chosen,记录第i个节点是否已选,初始值除1外全部设为false,记录权值的变量cost赋值为0;
以下②到④循环执行v-1次(每次生成一条边,运行(点的个数减1)次后,生成一棵最小生成树):
②临时变量p赋值为无限大,用于记录当前最小值;
③二重循环(外循环i,内循环j)扫描邻接矩阵:如果chosen[i]=true(也就是说第i个点已选),那么扫描x[i],如果not(chosen[j])(也就是说第j个点未选),那么如果x[i,j]<p,那么p赋值为x[i,j],临时变量q赋值为j;
④把cost赋值为cost+o,把chosen[q]赋值为true(也就是说第j个点已选);
⑤输出cost。

一、以上给出具体的运行过程。这个算法的策略就是贪心,和dijkstra差不多,每次都选择未选的边中权值最小的那一条,直到生成最小生成树。用chosen的目的就是保证生成过程中没有环出现,也就是说保证选择的边不会通向一个已经包含在生成树中的点。
二、这个只输出最小生成树的每条边权值之和,如果要输出整棵最小生成树,加一个[1..n,1..2]的数组,在第④步的时候把每次选的边记录下来就可以了。
三、用小顶堆在第③步优化一下的话就不用每次都扫描那么多边了,只不过建堆维护堆代码写起来很麻烦。
四、prim适合用于比较稠密的网,点数和边数差不多的时候效率很恶心,一般都用kruskal。

阅读全文

与普里姆算法算法的具体思路相关的资料

热点内容
程序员共享网站 浏览:935
搬家服务app怎么开发 浏览:414
腾讯云外卖服务器 浏览:154
单片机1602显示程序 浏览:255
php检测网络 浏览:336
程序员面试金典第6版 浏览:718
内存2g编译安卓 浏览:414
单片机小数点怎么亮 浏览:414
安卓手机怎么设置健康码双击两下就出来 浏览:266
同一个文件夹可以存在两个相同的文件吗 浏览:535
动态重编译jit 浏览:132
android蓝牙音频 浏览:451
mc国际版怎么加服务器 浏览:816
phphtaccess配置 浏览:747
dos命令锁定 浏览:486
python中调换数据位置 浏览:300
武汉市中石油加油什么APP优惠 浏览:545
程序员33岁以后的规划 浏览:858
招标文件加密流转 浏览:897
源码数据盈利可信吗 浏览:860