导航:首页 > 源码编译 > LDPC码编译码电路图

LDPC码编译码电路图

发布时间:2022-05-25 01:20:28

❶ LDPC码的非正规与正规LDPC码

在LDPC码的校验矩阵中,如果行列重量固定为(P,Y),即每个校验节点有P个变量节点参与校验,每个变量节点参与Y个校验节点,我们称之为正则LDPC码。Gallager最初提出的Gallager码就具有这种性质。从编码二分图的角度来看,这种LDPC码的变量节点度数全部为Y,而校验节点的度数都为P。我们还可以适当放宽上述正则LDPC码的条件,行列重量的均值可以不是一个整数,但行列重量尽量服从均匀分布。另外为了保证LDPC码的二分图上不存在长度为4的圈。我们通常要求行与行以及列与列之间的交叠部分重量不超过1,所谓交叠部分即任意两列或两行的相同部分。我们可以将正则LDPC码校验矩阵H的特征概括如下:
1. H的每行行重固定为P,每列列重固定为Y。
2. 任意两行(列)之间同为1的列(行)数(称为重叠数)不超过1,即H矩阵中不含四角为1 的小方阵,也即无4线循环。
3. 行重P和列重Y相对于H的行数M、列数N很小,H是个稀疏矩阵。
在正则LDPC码的校验矩阵中。行重和列重的均值保持不变,所以校验矩阵中1的个数随着码长的增加而线性增长,整个校验矩阵的元素个数则成平方增长。当码长达到一定长度时,校验矩阵H是非常稀疏的低密度矩阵。对于正则的LDPC码,MacKay给出了以下两个结论:
1. 对于任意给定列重大于3的LDPC码,存在某个小于信道传输容量且大于零的速率r ,当码长足够长时,可以实现以小于r且不为零的速率无差错的传输。也就是说任意给定一个不为零的传输速率r,存在一个小于相应香农限的噪声门限,当信道噪声低于该门限且码长足够长的时候,可以实现以r速率无差错的传输。
2. 当LDPC码的校验矩阵H的列重Y不固定,而是根据信道特性和传输速率来确定时,则一定可以找到一个最佳码,实现在任意小于信道传输容量的速率下无差错的传输。
对于LDPC 码的每个变量节点来说,当它参与的校验式越多,即度数Y越大,则它可以从更多的校验节点获取信息,也就可以更加准确的判断出它的正确值。对于H的每个校验节点来说,当它涉及的变量节点越少,即度数P越小,则它可以更准确的估计相关变量节点的状态。这种情况对于正则LDPc码来说是一对不可克服的矛盾,于是Luby,Mitzemnacher等人就引入了非正则LDPC码的概念。
在非正则LDPC码的编码二分图中,两个集合内部的节点度数不再保持相同,即每个变量节点参与的校验式数目或每个校验式中含有的变量节点数目不再保持均匀,而是有意设置部分突出的变量节点和校验节点。在译码过程中,那些参与较多校验式的变量节点迅速得到它们的正确译码信息,这样它们就可以给相邻的校验节点更加有效的概率信息,而这些校验节点又可以给与它们相邻的次数少的变量节点更多的信息。整个译码的过程呈现出一种波状效应,次数越高的变量节点首先获得正确信息,然后是次数较低的节点,然后依次往下,直到次数最低的变量节点。正是这种波状效应,使得非正则LDPC码获得比正则LDPC更好的译码性能。

❷ ldpc码的编译码原理是什么ldpc码是如何构造出来的译码算法有哪些

BP是belief-propagation,指得是置信传播法。 BF是Bit-Flipping,指得是比特翻转法。 两者的思想都是通过信息传递迭代判断最可能错误的点。但BP在计算中使用了先验概率和后验概率作为判断的依据。而BF则是根据传递的信息评估某位是1或0的可能性

❸ 我做的LDPC码编译码仿真,我现在构造了 H矩阵,但不会写用H生成G矩阵的那部分代码,求教各位!

Matlab2008 以后的版本自带的就有,只需要自己设定生成矩阵即可。自己看一下帮助,

Example
H = dvbs2ldpc(3/5);
spy(H); % Visualize the location of nonzero elements in H.
henc = fec.ldpcenc(H);
hdec = fec.ldpcdec(H);

❹ LDPC码的简介

任何一个(n,k)分组码,如果其信息元与监督元之间的关系是线性的,即能用一个线性方程来描述的,就称为线性分组码。
低密度奇偶校验码图(LDPC码)本质上是一种线形分组码,它通过一个生成矩阵G将信息序列映射成发送序列,也就是码字序列。对于生成矩阵G,完全等效地存在一个奇偶校验矩阵H,所有的码字序列C构成了H的零空间 (null space),即。
LDPC仿真系统图DLPC 码的奇偶校验矩阵H是一个稀疏矩阵,相对于行与列的长度,校验矩阵每行、列中非零元素的数目(我们习惯称作行重、列重)非常小,这也是LDPC码之所以称为低密度码的原因。由于校验矩阵H的稀疏性以及构造时所使用的不同规则,使得不同LDPC码的编码二分图(Taner图)具有不同的闭合环路分布。而二分图中闭合环路是影响LDPC码性能的重要因素,它使得LDPC码在类似可信度传播(Belief ProPagation)算法的一类迭代译码算法下,表现出完全不同的译码性能。
当H的行重和列重保持不变或尽可能的保持均匀时,我们称这样的LDPC码为正则LDPC码,反之如果列、行重变化差异较大时,称为非正则的LDPc码。研究结果表明正确设计的非正则LDPC码的性能要优于正则LDPC。根据校验矩阵H中的元素是属于GF(2)还是GF(q)(q=2p),我们还可以将LDPC码分为二元域或多元域的LDPC码。研究表明多元域LDPC码的性能要比二元域的好。

❺ 如何用MATLAB仿真LDPC码的编译码

Check if this entry is a directory or a file.
const size_t filenameLength = strlen(fileName);
if (fileName[filenameLength-1] == '/')
{
{

❻ LDPC码的码的构造

对LDPC码来说,不考虑码长和次数分布的情况下,校验矩阵的结构就成了影响其性能的重要因素,反映在二分图上对编码性能有重要影响的就是图中环的长度分布,需要采用一定的方法对校验矩阵进行构造,获得好的编码。
目前LDPC码的构造方法主要可以分为两大类:随机或伪随机构造方法和代数的构造方法。
随机或伪随机的构造方法主要考虑的是码的性能,在码长比较长(接近或超过10000) 时,性能非常接近香农限。代数的构造方法通常考虑的是降低编译码的复杂度,在码长比较短的时候更有优势。
1. Gallager LDPC码
用和乘积算法(SPA:Sum-pordcuct algorithm)进行译码取得最大后验概率的译码性能的条件是二分图中没有小的环,即girth为4的环,无4环的条件反映到二分图中就是任意两行中1的交迭数目不超过1个。无4环的二元高比特率LDPc码可以通过随机生成行构成,一般来说,这种方法不能生成固定行重量的矩阵。
Gallaegr提出了一种替代的方法:采用随机置换的方法来构造规则LDPC码。对于码长为N的(j,k)正则码,将M*N矩阵H通过j个大小为(M/j)*N的子矩阵构成,每个子矩阵本身也是LDPC矩阵,列重量为1,行重量为k,第一个子矩阵为阶梯型,即第1行的k个1的列号是从(i-1)*k l到1*k,而其他子矩阵都是第一个子矩阵的随机列置换,这样每个子矩阵每行都有k个1,每列都有1个1。这种构造方法要求M必须是j的整数倍。
(20,3,4)LDPC码的校验矩阵
Gallager曾给出了一个码长为20的规则(3,4)LDPC码的校验矩阵,如图所示。图中的第一个子矩阵就是一个阶梯型矩阵,而第2个和第3个矩阵都是第一个子矩阵的列置换。
Gallager同时证明了随机置换得到的GaHager LDPC码的最小汉明距离能够随着码长的增加而线性增加,而且在对称无记忆信道中,采用最大似然译码时,其误码率随着码长的增加而呈指数形式下降,这说明随机置换得到的Gallager LDPC码是一类相当好的码。
但是,Gallager在构造LDPC码时采用的是随机置换,这就给实现带来了麻烦,就需要大量的存储单元来存储校验矩阵中这些1的位置。
2. 确定性结构的LDPC码
确定性结构的DLPC码也称为准循环LDPC码。相对于随机结构的矩阵是很容易获得的确定性结构的矩阵,这种矩阵可以通过更少的参数来定义LDPC码。确定性结构的LDPC码的构造方法基于“阵列码”(Array Code)。阵列码是用来检测和纠正突发差错的二维码。
通过三个参数定义LDPC码。一个基本参数p和两个整数j和k。令H为jp*kp的矩阵,定义为:
LDPC码
其中这里的I是p*p的单位阵,Bi.j是Ip*p的左循环移位Bm.n或右循环移位Bm.n的置换矩阵。显然,H矩阵中1的分布就只与循环位数Bm.n有关。对LDPC码的分析就可以转换为对Bm.n的分析。
将各小矩阵的循环移动位数写成一个矩阵为
LDPC码
上面的校验矩阵提供了一个可以用于SAP译码的稀疏矩阵。而且,这个校验矩阵结构上没有四线循环。

❼ LDPC码的因子图(二分图)表示

为了分析方便,我们一般用因子图来表示一个LDPC码。因子图上所有的代码点可以分成互不相关的两类,我们称之为信息点和校验点。因子图上的边以一定的规律把它们连接起来,但是同一类中的代码点不能用边连接起来。事实上因子图与用来定义码字的奇偶校验矩阵H是相对应的,即因子图上的变量节点对应矩阵H的列向量,校验节点对应因子图上的行向量,而矩阵中非零元素就对应因子图上的每一条边。在定义新的码字时,每一次构造的码字在二进制矢量域中定义为x=(x1,x2,…,xn)。当且仅当方程Hx=0时为一码字,也就是说,当且仅当每一个校验点的相邻变量节点的异或值为0时,对应的二进制矢量x=(x1,x2,…,xn)才是一个码字。假设因子图上每一个变量节点的度数是丫,每一个校验点的度数是P,节点的次数为与该节点相联边的个数。如果Y,P相对于码字总长n来说很小,则该因子图对应的奇偶校验矩阵是稀疏矩阵。
一个码长n=6,码率r=1/3,列重Y=2,行重P=3的校验矩阵H和其对应的因子图如下:
校验矩阵 因子图 校验矩阵因子图
校验矩阵
因子图

阅读全文

与LDPC码编译码电路图相关的资料

热点内容
jtbcphp 浏览:337
编程时遇到源代码未编译如何处理 浏览:431
绿源app怎么查看绑定系统 浏览:357
qq里的压缩文件怎么保存 浏览:349
伤寒论桂林pdf 浏览:684
树洞app怎么搜索好友 浏览:217
冷库压缩机如何注油 浏览:641
无线wifi怎么加密呢 浏览:432
linuxjava配置环境变量 浏览:702
rust服务器怎么下载地图 浏览:831
程序员那么可爱被误会的片段 浏览:39
好玩免费的服务器地址 浏览:344
vb脚本编译 浏览:18
单片机led显示数字 浏览:379
vim编译器是什么 浏览:385
ava程序员面试标准 浏览:791
安卓原生系统状态栏编译美化 浏览:64
java线程是什么意思 浏览:710
如何查看服务器的外网ip地址 浏览:721
命令方块放置方块 浏览:367