导航:首页 > 源码编译 > 程序的算法怎么算

程序的算法怎么算

发布时间:2022-05-27 08:59:08

A. 程序中的时间复杂度是怎么计算的

算法复杂度的介绍,见网络:
http://ke..com/view/7527.htm

时间复杂度
时间频度
一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

计算方法
1. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))
分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
2. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))

例:算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //该步骤属于基本操作 ,执行次数:n的平方 次
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 ,执行次数:n的三次方 次
}
}
则有 T(n)= n的平方+n的三次方,根据上面括号里的同数量级,我们可以确定 n的三次方 为T(n)的同数量级
则有f(n)= n的三次方,然后根据T(n)/f(n)求极限可得到常数c
则该算法的 时间复杂度:T(n)=O(n^3) 注:n^3即是n的3次方。
3.在pascal中比较容易理解,容易计算的方法是:看看有几重for循环,只有一重则时间复杂度为O(n),二重则为O(n^2),依此类推,如果有二分则为O(logn),二分例如快速幂、二分查找,如果一个for循环套一个二分,那么时间复杂度则为O(nlogn)。

分类
按数量级递增排列,常见的时间复杂度有:
常数阶O(1),对数阶O(log2n),线性阶O(n),
线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,
k次方阶O(n^k), 指数阶O(2^n) 。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

关于对其的理解
《数据结构(C语言版)》------严蔚敏 吴伟民编着 第15页有句话"整个算法的执行时间与基本操作重复执行的次数成正比。"
基本操作重复执行的次数是问题规模n的某个函数f(n),于是算法的时间量度可以记为:T(n) = O( f(n) )
如果按照这么推断,T(n)应该表示的是算法的时间量度,也就是算法执行的时间。
而该页对“语句频度”也有定义:指的是该语句重复执行的次数。
如果是基本操作所在语句重复执行的次数,那么就该是f(n)。
上边的n都表示的问题规模。

以下来自网络知道:

对于这些算法
(1) for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
s++;

(2) for(i=1;i<=n;i++)
for(j=i;j<=n;j++)
s++;

(3) for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
s++;

(4) i=1;k=0;
while(i<=n-1){
k+=10*i;
i++;
}

(5) for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
for(k=1;k<=j;k++)
x=x+1;

对应的时间复杂度为:

1.时间复杂度O(n^2)
2.时间复杂度O(n^2)
3.时间复杂度O(n^2)
4.时间复杂度O(n)
5.时间复杂度O(n^3)

一般来说,时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)
比如:一般总运算次数表达式类似于这样:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a<>0时,时间复杂度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此类推

那么,总运算次数又是如何计算出的呢?
一般来说,我们经常使用for循环,就像刚才五个题,我们就以它们为例
1.循环了n*n次,当然是O(n^2)
2.循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)
3.循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)
4.循环了n-1≈n次,所以是O(n)
5.循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)

另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,因为对数换底公式:
log(a,b)=log(c,b)/log(c,a)
所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的

B. 什么是程序算法

算法是对特定问题求解过程的描述,是指令的有限序列,每条指令完成一个或多个操作。通俗地讲,就是为解决某一特定问题而采取的具体有限的操作步骤。

算法具有以下特性:

(1)有穷性:在有限的操作步骤内完成。有穷性是算法的重要特性,任何一个问题的解决不论其采取什么样的算法,其终归是要把问题解决好。如果一种算法的执行时间是无限的,或在期望的时间内没有完成,那么这种算法就是无用和徒劳的,我们不能称其为算法。

(2)确定性:每个步骤确定,步骤的结果确定。算法中的每一个步骤其目的应该是明确的,对问题的解决是有贡献的。如果采取了一系列步骤而问题没有得到彻底的解决,也就达不到目的,则该步骤是无意义的。

(3)可行性:每个步骤有效执行,得到确定的结果。每一个具体步骤在通过计算机实现时应能够使计算机完成,如果这一步骤在计算机上无法实现,也就达不到预期的目的,那么这一步骤是不完善的和不正确的,是不可行的。

(4)零个或多个输入:从外界获得信息。算法的过程可以无数据输入,也可以有多种类型的多个数据输入,需根据具体的问题加以分析。

(5)一个或多个:算法得到的结果就是算法的输出(不一定就是打印输出)。算法的目的是为解决一个具体问题,一旦问题得以解决,就说明采取的算法是正确的,而结果的输出正是验证这一目的的最好方式。

C. C程序算法

简化一下算法呵呵,由楼上的启发:

main()
{int i=0,x;
scanf("%d",&x):/*输入你要判断的数*/

while(x)
{
x/=10; /*每次x都除以10,直到1位数字除以10变0了。*/
++i; /*每除1次,i位数+1*/
}
printf("%d\n",i==0?1:i); /*打印,当i为0的时候其实是1位数*/
}

D. 请问大家如何计算程序算法的复杂程度和时间

算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))

E. 程序员必须掌握哪些算法

一.基本算法:

枚举. (poj1753,poj2965)

贪心(poj1328,poj2109,poj2586)

递归和分治法.

递推.

构造法.(poj3295)

模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)

二.图算法:

图的深度优先遍历和广度优先遍历.

最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
最小生成树算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
拓扑排序 (poj1094)

二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)

最大流的增广路算法(KM算法). (poj1459,poj3436)

三.数据结构.

串 (poj1035,poj3080,poj1936)

排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)

简单并查集的应用.

哈希表和二分查找等高效查找法(数的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
哈夫曼树(poj3253)



trie树(静态建树、动态建树) (poj2513)

四.简单搜索

深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)

广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)

简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)

五.动态规划

背包问题. (poj1837,poj1276)

型如下表的简单DP(可参考lrj的书 page149):
E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列) (poj3176,poj1080,poj1159)
C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)
六.数学

组合数学:
1.加法原理和乘法原理.
2.排列组合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
数论.
1.素数与整除问题
2.进制位.
3.同余模运算.
(poj2635, poj3292,poj1845,poj2115)
计算方法.
1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)
七.计算几何学.

几何公式.

叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)

多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
凸包. (poj2187,poj1113)

中级(校赛压轴及省赛中等难度):
一.基本算法:

C++的标准模版库的应用. (poj3096,poj3007)

较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)

二.图算法:

差分约束系统的建立和求解. (poj1201,poj2983)

最小费用最大流(poj2516,poj2516,poj2195)

双连通分量(poj2942)

强连通分支及其缩点.(poj2186)

图的割边和割点(poj3352)

最小割模型、网络流规约(poj3308)

三.数据结构.

线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)

静态二叉检索树. (poj2482,poj2352)

树状树组(poj1195,poj3321)

RMQ. (poj3264,poj3368)

并查集的高级应用. (poj1703,2492)

KMP算法. (poj1961,poj2406)

四.搜索

最优化剪枝和可行性剪枝

搜索的技巧和优化 (poj3411,poj1724)

记忆化搜索(poj3373,poj1691)

五.动态规划

较为复杂的动态规划(如动态规划解特别的旅行商TSP问题等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
记录状态的动态规划. (POJ3254,poj2411,poj1185)

树型动态规划(poj2057,poj1947,poj2486,poj3140)

六.数学

组合数学:
1.容斥原理.
2.抽屉原理.
3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).
4.递推关系和母函数.
数学.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率问题. (poj3071,poj3440)
3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)
计算方法.
1.0/1分数规划. (poj2976)
2.三分法求解单峰(单谷)的极值.
3.矩阵法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
随机化算法(poj3318,poj2454)
杂题(poj1870,poj3296,poj3286,poj1095)
七.计算几何学.

坐标离散化.

扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用)
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
多边形的内核(半平面交)(poj3130,poj3335)

几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)

高级(regional中等难度):
一.基本算法要求:

代码快速写成,精简但不失风格

(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)

保证正确性和高效性. poj3434

二.图算法:

度限制最小生成树和第K最短路. (poj1639)

最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
最优比率生成树. (poj2728)

最小树形图(poj3164)

次小生成树.

无向图、有向图的最小环

三.数据结构.

trie图的建立和应用. (poj2778)

LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和 在线算法(RMQ+dfs)).(poj1330)
双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的目的). (poj2823)
左偏树(可合并堆).

后缀树(非常有用的数据结构,也是赛区考题的热点).(poj3415,poj3294)
四.搜索

较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)

广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)

深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法. (poj3131,poj2870,poj2286)

五.动态规划

需要用数据结构优化的动态规划.(poj2754,poj3378,poj3017)
四边形不等式理论.

较难的状态DP(poj3133)

六.数学

组合数学.
1.MoBius反演(poj2888,poj2154)
2.偏序关系理论.
博奕论.
1.极大极小过程(poj3317,poj1085)
2.Nim问题.
七.计算几何学.

半平面求交(poj3384,poj2540)

可视图的建立(poj2966)

点集最小圆覆盖.

对踵点(poj2079)

F. C语言程序的算法怎么算

一般程序有3种结构,顺序、选择、循环。
顺序嘛就不用说了,选择用于有条件的情况,例如成绩<60,评级为'D',60<成绩<70评级为'C'...
循环就是用于重复做某样计算,就如同你的问题,累加(譬如从1+2...+100)实际上就是循环的典型也是最基本应用。
int
i,sum=0;
for(i=1;i<=100;i++)
sum
=
sum
+i;

G. 程序设计常见的算法

常用的算法有:递推法、贪心法、列举法、递归法、分治法和模拟法。
建议你去看看《算法导论》,上面很全的。

H. 计算机程序算法

平时说的算法就是数学上的计算方法,计算机中的算法是:解决问题的方法,不一定用数学方法(但大多都是数学方法),只要能通过计算机语言表达出来,达到最终目的的步骤都叫算法

I. 如何对一个程序进行算法分析时间复杂度怎么算

算法的复杂性

算法的复杂性是算法效率的度量,是评价算法优劣的重要依据。一个算法的复杂性的高低体现在运行该算法所需要的计算机资源的多少上面,所需的资源越多,我们就说该算法的复杂性越高;反之,所需的资源越低,则该算法的复杂性越低。

计算机的资源,最重要的是时间和空间(即存储器)资源。因而,算法的复杂性有时间复杂性和空间复杂性之分。

不言而喻,对于任意给定的问题,设计出复杂性尽可能低的算法是我们在设计算法时追求的一个重要目标;另一方面,当给定的问题已有多种算法时,选择其中复杂性最低者,是我们在选用算法适应遵循的一个重要准则。因此,算法的复杂性分析对算法的设计或选用有着重要的指导意义和实用价值。

简言之,在算法学习过程中,我们必须首先学会对算法的分析,以确定或判断算法的优劣。

1.时间复杂性:
例1:设一程序段如下(为讨论方便,每行前加一行号)
(1) for i:=1 to n do
(2) for j:=1 to n do
(3) x:=x+1
......
试问在程序运行中各步执行的次数各为多少?
解答:
行号 次数(频度)
(1) n+1
(2) n*(n+1)
(3) n*n
可见,这段程序总的执行次数是:f(n)=2n2+2n+1。在这里,n可以表示问题的规模,当n趋向无穷大时,如果 f(n)的值很小,则算法优。作为初学者,我们可以用f(n)的数量级O来粗略地判断算法的时间复杂性,如上例中的时间复杂性可粗略地表示为T(n)=O(n2)。

2.空间复杂性:

例2:将一一维数组的数据(n个)逆序存放到原数组中,下面是实现该问题的两种算法:

算法1:for i:=1 to n do

b[i]:=a[n-i+1];

for i:=1 to n do

a[i]:=b[i];

算法2:for i:=1 to n div 2 do

begin

t:=a[i];a[i]:=a[n-i-1];a[n-i-1]:=t

end;

算法1的时间复杂度为2n,空间复杂度为2n

算法2的时间复杂度为3*n/2,空间复杂度为n+1

显然算法2比算法1优,这两种算法的空间复杂度可粗略地表示为S(n)=O(n)

信息学比赛中,经常是:只要不超过内存,尽可能用空间换时间。

J. 单片机C语言延时程序的计算,是什么样的算法,请求高手。

void delay(unsigned char cnt)和void delay(unsigned int cnt)意义上是一样的
延时程序的延时过程,是
while(--cnt);
程序运行过程中消耗的时间
如何计算时间
这要根据你单片机上的晶振频率
51系列单片机1个机器周期等于12个时钟周期,12MHz晶振的话一个机器周期=1/12MHz*12=1us
delay(1000),
delay(1000)即--cnt这条指令运行1000次,消耗1000个机器周期,即1ms。在这个程序上运行消耗1ms时间,相当于延时1ms。

阅读全文

与程序的算法怎么算相关的资料

热点内容
抖音python面试算法题 浏览:86
java单击事件 浏览:641
绝对尺寸编程法 浏览:265
服务器共享文件夹中病毒 浏览:35
哪个app会员看综艺最全 浏览:761
程序员朋友圈招聘 浏览:339
细细的小木棍怎么做解压玩具 浏览:36
不要惹程序员的视频 浏览:995
码高编程如何加盟 浏览:756
程序员好处有哪些 浏览:954
c语言编译后的程序 浏览:12
公交卡单片机 浏览:745
减压缩软件下载 浏览:300
51单片机复位电路有哪两种 浏览:924
et2008加密狗教程 浏览:965
安卓手机用什么录制高清视频 浏览:749
cadim命令如何应用 浏览:949
免费ntp时钟服务器地址 浏览:686
域名如何与云服务器绑定 浏览:808
linuxjava环境搭建教程 浏览:128