1. PASCAL算法知识题~~高分~紧急~
6.1 穷举策略的概念
所谓枚举法,指的是从可能的解的集合中一一枚举各元素, 用题目给定的检验条件判定哪些是无用的,哪些是有用的。能使命题成立,即为其解。
有些问题可以用循环语句和条件语句直接求解,有些问题用循环求解时循环次数太多,无法编写程序,怎么办?下面是用“千军万马过独木桥,适者存”的方式实现穷举策略的。
6.2 典型例题与习题
例1.将2n个0和2n个1,排成一圈。从任一个位置开始,每次按逆时针的方向以长度为n+1的单位进行数二进制数。要求给出一种排法,用上面的方法产生出来的2n+1个二进制数都不相同。
例如,当n=2时,即22个0和22个1排成如下一圈:
比如,从A位置开始,逆时针方向取三个数000,然后再从B位置上开始取三个数001,接着从C开始取三个数010,...可以得到000,001,010,101,011,111,110,100共8个二进制数且都不相同。
程序说明:
以n=4为例,即有16个0,16个1,数组a用以记录32个0,1的排法,数组b统计二进制数出现的可能性。
程序清单
PROGRAM NOI00;
VAR
A :ARRAY[1..36] OF 0..1
B :ARRAY[0..31] OF INTEGER;
I,J,K,S,P:INTEGER;
BEGIN
FOR I:=1 TO 36 DO A[I]:=0;
FOR I:=28 TO 32 DO A[I]:=1;
P:=1; A[6]:=1;
WHILE (P=1) DO
BEGIN
J:=27
WHILE A[J]=1 DO J:=J-1;
( A[J]:=1 )
FOR I:=J+1 TO 27 DO ( A[i]:=0 )
FOR I:=0 TO 31 DO B[I]:=0;
FOR I:=1 TO 32 DO
BEGIN
( S:=0)
FOR K:=I TO I+4 DO S:=S*2+A[k];
( B[S]:=1 )
END;
S:=0;
FOR I:=0 TO 31 DO S:=S+B[I];
IF ( S=32 ) THEN P:=0
END;
FOR I:=1 TO 32 DO FOR J:=I TO I+4 DO WRITE(A[J]);
WRITELN
END.
例2:在A、B两个城市之间设有N个路站(如下图中的S1,且N<100),城市与路站之间、路站和路站之间各有若干条路段(各路段数<=20,且每条路段上的距离均为一个整数)。
A,B的一条通路是指:从A出发,可经过任一路段到达S1,再从S1出发经过任一路段,…最后到达B。通路上路段距离之和称为通路距离(最大距离<=1000)。当所有的路段距离给出之后,求出所有不同距离的通路个数(相同距离仅记一次)。
例如:下图所示是当N=1时的情况:
从A到B的通路条数为6,但因其中通路5+5=4+6,所以满足条件的不同距离的通路条数为5。
算法说明:本题采用穷举算法。
数据结构:N:记录A,B间路站的个数
数组D[I,0]记录第I-1个到第I路站间路段的个数
D[I,1],D[I,2],…记录每个路段距离
数组G记录可取到的距离
程序清单:
program CHU7_6;
var i,j,n,s:integer;
b:array[0..100] of integer;
d:array[0..100,0..20] of integer;
g:array[0..1000] of 0..1;
begin
readln(n);
for i:=1 to n+1 do
begin
readln(d[i,0]);
for j:=1 to d[i,0] do read(d[i,j]);
end;
d[0,0]:=1;
for i:=1 to n+1 do b[i]:=1;
b[0]:=0;
for i:=1 to 1000 do g[i]:=0;
while b[0]<>1 do
begin
s:=0;
for i:=1 to n+1 do
s:= s+d[i,b[i]];
g[s]:=1;j:=n+1;
while b[j]=d[j,0] do j:=j-1;
b[j]:=b[j]+1;
for i:=j+1 to n+1 do b[i]:=1;
end;
s:=0;
for i:=1 to 1000 do
s:=s+g[i];
writeln(s);readln;
end.
2.1 递归的概念
1.概念
一个过程(或函数)直接或间接调用自己本身,这种过程(或函数)叫递归过程(或函数).
如:
procere a;
begin
.
.
.
a;
.
.
.
end;
这种方式是直接调用.
又如:
procere b; procere c;
begin begin
. .
. .
. .
c; b;
. .
. .
. .
end; end;
这种方式是间接调用.
例1计算n!可用递归公式如下:
1 当 n=0 时
fac(n)={n*fac(n-1) 当n>0时
可编写程序如下:
program fac2;
var
n:integer;
function fac(n:integer):real;
begin
if n=0 then fac:=1 else fac:=n*fac(n-1)
end;
begin
write('n=');readln(n);
writeln('fac(',n,')=',fac(n):6:0);
end.
例2 楼梯有n阶台阶,上楼可以一步上1阶,也可以一步上2阶,编一程序计算共有多少种不同的走法.
设n阶台阶的走法数为f(n)
显然有
1 n=1
f(n)={2 n=2
f(n-1)+f(n-2) n>2
可编程序如下:
program louti;
var n:integer;
function f(x:integer):integer;
begin
if x=1 then f:=1 else
if x=2 then f:=2 else f:=f(x-1)+f(x-2);
end;
begin
write('n=');read(n);
writeln('f(',n,')=',f(n))
end.
2.2 如何设计递归算法
1.确定递归公式
2.确定边界(终了)条件
练习:
用递归的方法完成下列问题
1.求数组中的最大数
2.1+2+3+...+n
3.求n个整数的积
4.求n个整数的平均值
5.求n个自然数的最大公约数与最小公倍数
6.有一对雌雄兔,每两个月就繁殖雌雄各一对兔子.问n个月后共有多少对兔子?
7.已知:数列1,1,2,4,7,13,24,44,...求数列的第 n项.
2.3典型例题
例3 梵塔问题
如图:已知有三根针分别用1,2,3表示,在一号针中从小放n个盘子,现要求把所有的盘子
从1针全部移到3针,移动规则是:使用2针作为过度针,每次只移动一块盘子,且每根针上
不能出现大盘压小盘.找出移动次数最小的方案.
程序如下:
program fanta;
var
n:integer;
procere move(n,a,b,c:integer);
begin
if n=1 then writeln(a,'--->',c)
else begin
move(n-1,a,c,b);
writeln(a,'--->',c);
move(n-1,b,a,c);
end;
end;
begin
write('Enter n=');
read(n);
move(n,1,2,3);
end.
例4 快速排序
快速排序的思想是:先从数据序列中选一个元素,并将序列中所有比该元素小的元素都放到它的右边或左边,再对左右两边分别用同样的方法处之直到每一个待处理的序列的长度为1, 处理结束.
程序如下:
program kspv;
const n=7;
type
arr=array[1..n] of integer;
var
a:arr;
i:integer;
procere quicksort(var b:arr; s,t:integer);
var i,j,x,t1:integer;
begin
i:=s;j:=t;x:=b[i];
repeat
while (b[j]>=x) and (j>i) do j:=j-1;
if j>i then begin t1:=b[i]; b[i]:=b[j];b[j]:=t1;end;
while (b[i]<=x) and (i<j) do i:=i+1;
if i<j then begin t1:=b[j];b[j]:=b[i];b[i]:=t1; end
until i=j;
b[i]:=x;
i:=i+1;j:=j-1;
if s<j then quicksort(b,s,j);
if i<t then quicksort(b,i,t);
end;
begin
write('input data:');
for i:=1 to n do read(a[i]);
writeln;
quicksort(a,1,n);
write('output data:');
for i:=1 to n do write(a[i]:6);
writeln;
end.
3.1 回溯的设计
1.用栈保存好前进中的某些状态.
2.制定好约束条件
例1由键盘上输入任意n个符号;输出它的全排列.
program hh;
const n=4;
var i,k:integer;
x:array[1..n] of integer;
st:string[n];
t:string[n];
procere input;
var i:integer;
begin
write('Enter string=');readln(st);
t:=st;
end;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if x[i]=x[k] then
begin place:=false; break end ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(t[x[i]]);
writeln;
end;
begin
input;
k:=1;x[k]:=0;
while k>0 do
begin
x[k]:=x[k]+1;
while (x[k]<=n) and (not place(k)) do x[k]:=x[k]+1;
if x[k]>n then k:=k-1
else if k=n then print
else begin k:=k+1;x[k]:=0 end
end ;
end.
例2.n个皇后问题:
program hh;
const n=8;
var i,j,k:integer;
x:array[1..n] of integer;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if (x[i]=x[k]) or (abs(x[i]-x[k])=abs(i-k)) then
place:=false ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(x[i]:4);
writeln;
end;
begin
k:=1;x[k]:=0;
while k>0 do
begin
x[k]:=x[k]+1;
while (x[k]<=n) and (not place(k)) do x[k]:=x[k]+1;
if x[k]>n then k:=k-1
else if k=n then print
else begin k:=k+1;x[k]:=0 end
end ;
end.
回溯算法的公式如下:
3.2 回溯算法的递归实现
由于回溯算法用一栈数组实现的,用到栈一般可用递归实现。
上述例1的递归方法实现如下:
program hh;
const n=4;
var i,k:integer;
x:array[1..n] of integer;
st:string[n];
t:string[n];
procere input;
var i:integer;
begin
write('Enter string=');readln(st);
t:=st;
end;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if x[i]=x[k] then
begin place:=false; break end ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(t[x[i]]);
writeln;readln;
end;
procere try(k:integer);
var i :integer;
begin
if k=n+1 then begin print;exit end;
for i:=1 to n do
begin
x[k]:=i;
if place(k) then try(k+1)
end
end;
begin
input;
try(1);
end.
例2:n皇后问题的递归算法如下:
程序1:
program hh;
const n=8;
var i,j,k:integer;
x:array[1..n] of integer;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if (x[i]=x[k]) or (abs(x[i]-x[k])=abs(i-k)) then
place:=false ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(x[i]:4);
writeln;
end;
procere try(k:integer);
var i:integer;
begin
if k=n+1 then begin print; exit end;
for i:= 1 to n do
begin
x[k]:=i;
if place(k) then try(k+1);
end;
end ;
begin
try(1);
end.
程序2:
说明:当n=8 时有30条对角线分别用了l和r数组控制,
用c数组控制列.当(i,j)点放好皇后后相应的对角线和列都为false.递归程序如下:
program nhh;
const n=8;
var s,i:integer;
a:array[1..n] of byte;
c:array[1..n] of boolean;
l:array[1-n..n-1] of boolean;
r:array[2..2*n] of boolean;
procere output;
var i:integer;
begin
for i:=1 to n do write(a[i]:4);
inc(s);writeln(' total=',s);
end;
procere try(i:integer);
var j:integer;
begin
for j:=1 to n do
begin
if c[j] and l[i-j] and r[i+j] then
begin
a[i]:=j;c[j]:=false;l[i-j]:=false; r[i+j]:=false;
if i<n then try(i+1) else output;
c[j]:=true;l[i-j]:=true;r[i+j]:=true;
end;
end;
end;
begin
for i:=1 to n do c[i]:=true;
for i:=1-n to n-1 do l[i]:=true;
for i:=2 to 2*n do r[i]:=true;
s:=0;try(1);
writeln;
end.
7.1 贪心策略的定义
贪心策略是:指从问题的初始状态出发,通过若干次的贪心选择而得出最优值(或较优解)的一种解题方法。
其实,从“贪心策略”一词我们便可以看出,贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该题运用贪心策略可以得到最优解或较优解。
例1:在n行m列的正整数矩阵中,要求从每一行中选一个数,使得选出的n个数的和最大。
本题可用贪心策略:选n次,每一次选相应行中的最大值即可。
例2:在一个N×M的方格阵中,每一格子赋予一个数(即为权)。规定每次移动时只能向上或向右。现试找出一条路径,使其从左下角至右上角所经过的权之和最大。
本题用贪心策略不能得到最优解,我们以2×4的矩阵为例。 3 4 6
1 2 10
若按贪心策略求解,所得路径为:1,3,4,6;
若按动态规划法求解,所得路径为:1,2,10,6。
例3:设定有n台处理机p1,p2,......pn,和m个作业j1,j2,...jm,处理机可并行工作,作业未完成不能中断,作业ji在处理机上的处理时间为ti,求解最佳方案,使得完成m项工作的时间最短?
本题不能用贪心算法求解:理由是若n=3,m=6 各作业的时间分别是11 7 5 5 4 7
用贪心策略解(每次将作业加到最先空闲的机器上)time=15,用搜索策略最优时间应是14,但是贪心策略给我们提供了一个线索那就是每台处理上的时间不超过15,给搜索提供了方便。
总之:
1. 不能保证求得的最后解是最佳的;
2. 只能用来求某些最大或最小解问题;
3. 能确定某些问题的可行解的范围,特别是给搜索算法提供了依据。
7. 2 贪心策略的特点
贪心算法有什么样的特点呢?我认为,适用于贪心算法解决的问题应具有以下2个特点:
1、贪心选择性质:
所谓贪心选择性质是指应用同一规则f,将原问题变为一个相似的、但规模更小的子问题、而后的每一步都是当前看似最佳的选择。这种选择依赖于已做出的选择,但不依赖于未做出的选择。从全局来看,运用贪心策略解决的问题在程序的运行过程中无回溯过程。关于贪心选择性质,读者可在后文给出的贪心策略状态空间图中得到深刻地体会。
2、局部最优解:
我们通过特点2向大家介绍了贪心策略的数学描述。由于运用贪心策略解题在每一次都取得了最优解,但能够保证局部最优解得不一定是贪心算法。如大家所熟悉得动态规划算法就可以满足局部最优解,但贪心策略比动态规划时间效率更高站用内存更少,编写程序更简单。
7.3 典型例题与习题
例4:背包问题:
有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。 物品
A
B
C
D
E
F
G
重量
35
30
60
50
40
10
25
价值
10
40
30
50
35
40
30
分析:
目标函数: ∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)
(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
(2)每次挑选所占空间最小的物品装入是否能得到最优解?
(3)每次选取单位容量价值最大的物品,成为解本题的策略。
程序如下:
program beibao;
const
m=150;
n=7;
var
xu:integer;
i,j:integer;
goods:array[1..n,0..2] of integer;
ok:array[1..n,1..2] of real;
procere init;
var
i:integer;
begin
xu:=m;
for i:=1 to n do
begin
write('Enter the price and weight of the ',i,'th goods:');
goods[i,0]:=i;
read(goods[i,1],goods[i,2]);
readln;
ok[i,1]:=0; ok[i,2]:=0;
end;
end;
procere make;
var
bi:array[1..n] of real;
i,j:integer;
temp1,temp2,temp0:integer;
begin
for i:=1 to n do
bi[i]:=goods[i,1]/goods[i,2];
for i:=1 to n-1 do
for j:=i+1 to n do
begin
if bi[i]<bi[j] then begin
temp0:=goods[i,0]; temp1:=goods[i,1]; temp2:=goods[i,2];
goods[i,0]:=goods[j,0]; goods[i,1]:=goods[j,1]; goods[i,2]:=goods[j,2];
goods[j,0]:=temp0; goods[j,1]:=temp1; goods[j,2]:=temp2;
end;
end;
end;
begin
init;
make;
for i:=1 to 7 do
begin
if goods[i,2]>xu then break;
ok[i,1]:=goods[i,0]; ok[i,2]:=1;
xu:=xu-goods[i,2];
end;
j:=i;
if i<=n then
begin
ok[i,1]:=goods[i,0];
ok[i,2]:=xu/goods[i,2];
end;
for i:=1 to j do
writeln(ok[i,1]:1:0,':',ok[i,2]*goods[i,2]:2:1);
end.
例5:旅行家的预算问题:
一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市,给定两个城市间的距离d1,汽车油箱的容量是c,每升汽油能行驶的距离d2,出发时每升汽油的价格是p,沿途加油站数为n(可为0),油站i离出发点的距离是di,每升汽油的价格是pi。
计算结果四舍五入保留小数点后两位,若无法到达目的地输出“No answer"
若输入:
d1=275.6 c=11.9 d2=27.4 p=8 n=2
d[1]=102 p[1]=2.9
d[2]=220 p[2]=2.2
output
26.95
本问题的贪心策略是:找下一个较便宜的油站,根据距离确定加满、不加、加到刚好到该站。
程序如下:
program jiayou;
const maxn=10001;
zero=1e-16;
type
jd=record
value,way,over:real;
end;
var oil:array[1..maxn] of ^jd;
n:integer;
d1,c,d2,cost,maxway:real;
function init:boolean;
var i:integer;
begin
new(oil[1]);
oil[1]^.way:=0;
read(d1,c,d2,oil[1]^.value,n);
maxway:=d2*c;
for i:=2 to n+1 do
begin
new(oil[i]);
readln(oil[i]^.way,oil[i]^.value);
oil[i]^.over:=0;
end;
inc(n,2);
new(oil[n]);
oil[n]^.way:=d1;
oil[n]^.value:=0;
oil[n]^.over:=0;
for i:=2 to n do
if oil[i]^.way-oil[i-1]^.way>maxway then
begin
init:=false;
exit
end;
init:=true;
end;
procere buy(i:integer;miles:real);
begin
cost:=cost+miles/d2*oil[i]^.value;
end;
procere solve;
var i,j:integer;
s:real;
begin
i:=1;j:=i+1;
repeat
s:=0.0;
while( s<=maxway+zero) and (j<=n-1) and (oil[i]^.value<=oil[j]^.value) do
begin
inc(j);
s:=s+oil[j]^.way-oil[j-1]^.way
end;
if s<=maxway+zero then
if (oil[i]^.over+zero>=oil[j]^.way-oil[i]^.way) then
oil[j]^.over:=oil[i]^.over-(oil[j]^.way-oil[i]^.way) else
begin
buy(i,oil[j]^.way-oil[i]^.way-oil[i]^.over);
oil[j]^.over:=0.0;
end
else begin
buy(i,maxway-oil[i]^.over);
j:=i+1;
oil[j]^.over:=maxway-(oil[j]^.way-oil[i]^.way);
end;
i:=j;
until i=n;
end;
begin
cost:=0;
if init then begin
solve;
writeln(cost:0:2);
end else writeln('No answer');
end.
例6:n个部件,每个部件必须经过先A后B两道工序。
以知部件i在A,B 机器上的时间分别为ai,bi。如何安排加工顺序,总加工时间最短?
输入:
5 部件 1 2 3 4 5
ai 3 5 8 7 10
bi 6 2 1 4 9
输出:
34
1 5 4 2 3
本问题的贪心策略是A机器上加工短的应优先,B机器上加工短的应靠后。
程序如下:
program workorder;
const maxn=100;
type jd=record
a,b,m,o:integer;
end;
var n,min,i:integer;
c:array[1..maxn] of jd;
order:array[1..maxn] of integer;
procere init;
var i:integer;
begin
readln(n);
for i:=1 to n do
read(c[i].a);
readln;
for i:=1 to n do
read(c[i].b);
readln;
for i:=1 to n do
begin
if c[i].a<c[i].b then c[i].m:=c[i].a else c[i].m:=c[i].b;
c[i].o:=i;
end;
end;
procere sort;
var i,j,k,t:integer;
temp:jd;
begin
for i:=1 to n-1 do
begin
k:=i;t:=c[i].m;
for j:=i+1 to n do
if c[j].m<t then begin t:=c[j].m;k:=j end ;
if k<>i then begin temp:=c[i];c[i]:=c[k];c[k]:=temp end
end;
end;
procere playorder;
var i,s,t:integer;
begin
fillchar(order,sizeof(order),0);
s:=1;
t:=n;
for i:=1 to n do
if c[i].m=c[i].a then begin order[s]:=i;s:=s+1 end
else begin order[t]:=i;t:=t-1;end;
end;
procere calc_t;
var i,t1,t2:integer;
begin
t1:=0;t2:=0;
for i:=1 to n do
begin
t1:=t1+c[order[i]].a;
if t2<t1 then t2:=t1;
t2:=t2+c[order[i]].b;
end;
min:=t2;
end;
begin
init;
sort;
playorder;
calc_t;
writeln(min);
for i:=1 to n do
write(c[order[i]].o,' ');
writeln;
end.
2. 在算法中如何识别回文的数字
# include <stdio.h>
int hwc(long a)
{ int i=0,b,c[10];
while(a)
{c[i]=a%10;
a=a/10;
i++;
}
c[i]='\0';
b=i;
for(i=0;i<b/2+1;i++)
if(c[i]!=c[b-1])
{return 0;
break;
}
else
return 1;
}
main()
{long a,b;
printf("please input_ ");
scanf("%ld",&a);
b=hwc(a);
if(b)
printf("yes");
else
printf("no");
getch();
}
判断一个数是否为回文结构
3. 设计一个算法,判断一个正的n(n>2)位数是不是回文数
算法语言:C++语言 #include <iostream>#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
void Numtostring(int num,char s[]) //自定义数字转换成字符串函数
{
int temp,i=0;
// char *s;
// s=(char *)malloc(500);
//char s[500];
while(num!=0)
{
temp=num%10;
s[i]=temp+48;
i++;
num=num/10;
}
s[i]='\0';
strrev(s);
}
int NumberTest0(int num) //数字逆序,返回逆序值
{
int temp;
int n,i;
int num0=0;
n=log10(num);
printf("n=%d\n",n);
for(i=n;i>=0;i--)
{
temp=num%10;
num=num/10;
num0+=temp*pow(10,i);
printf("num0=%d\n",num0);
}
return num0;
}
int StringTest(int num)//回文判断,字符串逆转思路
{
char s[500],s1[500];
Numtostring(num,s);//数字转换成字符串函数
puts(s);
strcpy(s1,s);
strrev(s1);
if(strcmp(s1,s)==0)
printf("Yes\n");
else
printf("No\n");
return 0;
}
int NumberTest1(int n)//回文判断 老师解题思路 听说是大神级的人物写的。。。
{
int temp=0;
int m=n;
while(n)
{
temp=temp*10;
temp+=n%10;
n=n/10;
}
printf("%d\n",temp);
if(temp==m)
printf("Yes\n");
else
printf("No\n");
return 0;
}
int main()
{
int num,num0;
// long n;
char s[500];
while(scanf("%d",&num)!=EOF)
{
/**//*num0=Test(num);
printf("%d\n",num0);
if(num0==num)
printf("Yes\n");
else
printf("No\n");*/
// Numtostring(num,s);
// puts(s);
// StringTest(num);
NumberTest1(num);
}
return 0;
}
【广州大学华软软件学院】为您服务
4. 设计一个算法,输出所有3位数的回文数(如101、323、919等),并画出算法框图…求高手!
1) 令b=0
2) 令b增加1
3) 如果b=10,则结束算法
4) 令a=0
5) 输出(b*100+a*10+b)
6) 令a增加1
7) 如果a=10,则回到2),否则回到5)
自己把它转化成框图吧.
5. 求一个算法:通过两个数字返回一个1-6之间的固定数字
其实这个数得百位不需要考虑!因为整百得数都能够被4整除!!!
现在可以看成是一个两位数得十位数与个位的数字互换,得到一个新的2位数,,新,旧两个2位数都能被4整除!!!
这样的数有 84和48是一组 ;40和04是一组;80和08是一组; 两个相同得数算不算算,(如00 44 88);就只有这么多了,至于百位数可以是1 2 3 4 5 6 7 8 9重得任意一个!
百位是1到8的任意数都行,只要看十位与个位就行了
十位与个位必须都在是偶数
符合要求的数为X44,X48,X06,X08,X00,X88,
6. 回文数的回文数算法
随意找一个十进制的数,把它倒过来成另一个数,再把这两个数相加,得一个和数,这是第一步;然后把这个和数倒过来,与原来的和数相加,又得到一个新的和数,这是第二步。照此方法,一步步接续往下算,直到出现一个“回文数”为n。例如:28+82=110,110+011=121,两步就得出了一个“回文数”。如果接着算下去,还会得到更多的“回文数”。这个过程称为“196算法”。
7. 24点问题,回溯算法
回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。用回溯算法解决问题的一般步骤为: 1、定义一个解空间,它包含问题的解。 2、利用适于搜索的方法组织解空间。 3、利用深度优先法搜索解空间。 4、利用限界函数避免移动到不可能产生解的子空间。 问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。1.跳棋问题:33个方格顶点摆放着32枚棋子,仅中央的顶点空着未摆放棋子。下棋的规则是任一棋子可以沿水平或成垂直方向跳过与其相邻的棋子,进入空着的顶点并吃掉被跳过的棋子。试设计一个算法找出一种下棋方法,使得最终棋盘上只剩下一个棋子在棋盘中央。算法实现提示利用回溯算法,每次找到一个可以走的棋子走动,并吃掉。若走到无子可走还是剩余多颗,则回溯,走下一颗可以走动的棋子。当吃掉31颗时说明只剩一颗,程序结束。2.中国象棋马行线问题:中国象棋半张棋盘如图1(a)所示。马自左下角往右上角跳。今规定只许往右跳,不许往左跳。比如图4(a)中所示为一种跳行路线,并将所经路线打印出来。打印格式为:0,0->2,1->3,3->1,4->3,5->2,7->4,8…算法分析:如图1(b),马最多有四个方向,若原来的横坐标为j、纵坐标为i,则四个方向的移动可表示为:1: (i,j)→(i+2,j+1); (i<3,j<8) 2: (i,j)→(i+1,j+2); (i<4,j<7)3: (i,j)→(i-1,j+2); (i>0,j<7) 4: (i,j)→(i-2,j+1); (i>1,j<8)搜索策略:S1:A[1]:=(0,0);S2:从A[1]出发,按移动规则依次选定某个方向,如果达到的是(4,8)则转向S3,否则继续搜索下一个到达的顶点;S3:打印路径。算法设计:procere try(i:integer); var j:integer;beginfor j:=1 to 4 do if 新坐标满足条件 thenbegin记录新坐标;if 到达目的地 then print else try(i+1); 退回到上一个坐标,即回溯;end;end;
8. 什么是回文数算法
回文数算法 c语言和java语言实现回文数算法的区别
问题:
将所有回文数从小到大排列,求第N个回文数。
一个正数如果顺着和反过来都是一样的(如13431,反过来也是...
9. 设计一个判断正整数是一个回文数的算法.所谓回文数是指左右数字完全对称的自然数.例如,121,12321,484,555.
在窗体上画一个textbox控件和一个commandbutton控件
输入以下代码:
Private Sub Command1_Click()
If Text1.Text = StrReverse(Text1.Text) Then
Print Text1.Text & " 是回文数"
Else
Print Text1.Text & " 不是回文数"
End If
End Sub
10. 回文数字有什么特点回文数字是什么得到的
特点:“回文”是指正读反读都能读通的句子,它是古今中外都有的一种修辞方式和文字游戏,如“我为人人,人人为我”等。在数学中也有这样一类数字有这样的特征,成为回文数(palindrome number)。
算法:随意找一个十进制的数,把它倒过来成另一个数,再把这两个数相加,得一个和数,这是第一步;然后把这个和数倒过来,与原来的和数相加,又得到一个新的和数,这是第二步。照此方法,一步步接续往下算,直到出现一个“回文数”为n。例如:28+82=110,110+011=121,两步就得出了一个“回文数”。如果接着算下去,还会得到更多的“回文数”。这个过程称为“196算法”。