⑴ 遗传算法工具箱的具体使用
matlab遗传算法工具箱函数及实例讲解 核心函数:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数
【输出参数】
pop--生成的初始种群
【输入参数】
num--种群中的个体数目
bounds--代表变量的上下界的矩阵
eevalFN--适应度函数
eevalOps--传递给适应度函数的参数
options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如
precision--变量进行二进制编码时指定的精度
F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数
【输出参数】
x--求得的最优解
endPop--最终得到的种群
bPop--最优种群的一个搜索轨迹
【输入参数】
bounds--代表变量上下界的矩阵
evalFN--适应度函数
evalOps--传递给适应度函数的参数
startPop-初始种群
opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0]
termFN--终止函数的名称,如['maxGenTerm']
termOps--传递个终止函数的参数,如[100]
selectFN--选择函数的名称,如['normGeomSelect']
selectOps--传递个选择函数的参数,如[0.08]
xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']
xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]
mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
⑵ matlab遗传算法工具箱在哪
直接在命令窗口里边输入gatool就行了,用遗传算法还可以使用ga函数,具体使用格式可以在help系统里看ga,你还可以按照如下步骤打开遗传算法工具箱:1,打开MATLAB,2点击左下方的START按钮 3,点toolboxes,打开后选择Genetic Algorithm and Direct Search 然后就可以进入gatool了,然后就会弹出ga工具箱(注:我的版本是7.7的,不同版本可能不同)
⑶ 怎么使用matlab遗传算法工具箱GUI
恩
有的
你只要在matlab的command中输入gatool就会出现遗传工具箱的gui界面所有通过命令行实现的options都可以通过这个界面设置,很方便也很傻瓜,挺好用的如果需要,还可以使用菜单中的file将gui文件保存为m代码,这样就不需要自己写程序,却得到了m代码
⑷ 遗传算法都可以用什么软件做啊 程序怎么编写
大家都用c或matlab语言,你怎么这有想法
,matlab,vb,c我也学过,但是我还是劝你用matlab,他比较灵活,再一个用遗传算法算的一般都是需建模矩阵
⑸ 遗传算法工具箱是什么
遗传工具箱是MATLAB中的一个工具,主要是用来求解优化问题的
⑹ 做数学建模用到的遗传算法,难不难,要怎么学要不要用专门的工具箱
要看你用遗传算法解决什么问题,一般情况下,有两个方向使用遗传算法,一是自己编写遗传算法代码解决问题,二是用Matlab遗传算法工具箱。前者可以学习王小平的《遗传算法——理论、应用与软件实现》这本书,后者可以学习 雷英杰的《MATLAB遗传算法工具箱及应用》这本书,网上都可以找到电子版。
你要是用遗传算法解决旅行商问题这样的组合优化问题,建议你自己编码实现吧,网上可以找到很多代码参考。
⑺ MATLAB遗传算法工具箱该怎么使用呢
直接在命令窗口里边输入gatool就行了,用遗传算法还可以使用ga函数,具体使用格式可以在help系统里看ga,你还可以按照如下步骤打开遗传算法工具箱:1,打开MATLAB,2点击左下方的START按钮 3,点toolboxes,打开后选择Genetic Algorithm and Direct Search 然后就可以进入gatool了,然后就会弹出ga工具箱(注:我的版本是7.7的,不同版本可能不同),希望对你有用哈!