导航:首页 > 源码编译 > em算法介绍

em算法介绍

发布时间:2022-06-06 01:30:26

A. em算法怎么做聚类

1.一般概念介绍

最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。

B. 如何自学人工智能

数学知识
我想在大多数学校里,数学都是理工科学生的必修课,微积分、线性代数、概率论与数理统计,这些都比较基础实用,我觉得这个数学基础对入门人工智能足够了,人工智能应用数学最多的也就是求导、矩阵的运算和分解、概率的统计与分析。
编程能力
工欲善其事、必先利其器,人工智能方向编程语言使用最多的应该就是Python了,在很多学校理工科学生应该都会必修一门编程课,有的是C,有的是C++,就算这些都没用过,也应该对Matlab了解一些,我觉得有一些编程基础入门Python算是比较简单的,网上资源很多,社区支持也很强大。
机器学习
我这里所说的机器学习是广义上的机器学习,涵盖深度学习。无论是做传统的机器学习回归和分类,还是做深度学习,无论是做计算机视觉,还是做自然语言处理,都离不开机器学习,后面我会介绍一些我认为比较好的学习资源,对于机器学习,我划分为两个方面:(1) 框架层面;(2) 理论层面。

C. 泪求与EM算法类似的SAGE算法的简介!感激不尽!~

纵马飞迎。程远

D. em算法的介绍

最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,用于含有隐变量(latent variable)的概率参数模型的最大似然估计或极大后验概率估计。

E. 利用lda.collapsed.gibbs.sampler怎样去预测新的样本文档

一.主题模型

传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。
举个例子,有两个句子分别如下:
“乔布斯离我们而去了。”
“苹果价格会不会降?”
可以看到上面这两个句子没有共同出现的单词,但这两个句子是相似的,如果按传统的方法判断这两个句子肯定不相似,所以在判断文档相关性的时候需要考虑到文档的语义,而语义挖掘的利器是主题模型,LDA就是其中一种比较有效的模型。
在主题模型中,主题表示一个概念、一个方面,表现为一系列相关的单词,是这些单词的条件概率。形象来说,主题就是一个桶,里面装了出现概率较高的单词,这些单词与这个主题有很强的相关性。
怎样才能生成主题?对文章的主题应该怎么分析?这是主题模型要解决的问题。
首先,可以用生成模型来看文档和主题这两件事。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到的。那么,如果我们要生成一篇文档,它里面的每个词语出现的概率为:

这个概率公式可以用矩阵表示:

其中”文档-词语”矩阵表示每个文档中每个单词的词频,即出现的概率;”主题-词语”矩阵表示每个主题中每个单词的出现概率;”文档-主题”矩阵表示每个文档中每个主题出现的概率。
给定一系列文档,通过对文档进行分词,计算各个文档中每个单词的词频就可以得到左边这边”文档-词语”矩阵。主题模型就是通过左边这个矩阵进行训练,学习出右边两个矩阵。
主题模型有早起使用SVD的LSA(隐形语义分析),然后引入基于概率的pLSA(ProbabilisticLatent Semantic Analysis),其参数学习采用EM算法和后来改进PLSA,引入hyperparameter的LDA(Latent Dirichlet Allocation),其参数学习主要采用EM和Gibbs sampling,下面主要介绍LDA。
二.LDA

LDA要干的事情简单来说就是为一堆文档进行聚类(所以是非监督学习),一种topic就是一类,要聚成的topic数目是事先指定的。聚类的结果是一个概率,而不是布尔型的100%属于某个类。国外有个博客上有一个清晰的例子,直接引用:
Suppose you have the following set of sentences:
I like to eat broccoli and bananas.
I ate a banana and spinach smoothie for breakfast.
Chinchillas and kittens are cute.
My sister adopted a kitten yesterday.
Look at this cute hamster munching on a piece of broccoli.
What is latent Dirichlet allocation? It’s a way of automatically discovering topics that these sentences contain. For example, given these sentences and asked for 2 topics, LDA might proce something like
Sentences 1 and 2: 100% Topic A
Sentences 3 and 4: 100% Topic B
Sentence 5: 60% Topic A, 40% Topic B
Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, … (at which point, you could interpret topic A to be about food)
Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, … (at which point, you could interpret topic B to be about cute animals)
上面关于sentence 5的结果,可以看出来是一个明显的概率类型的聚类结果(sentence 1和2正好都是100%的确定性结果)。
再看例子里的结果,除了为每句话得出了一个概率的聚类结果,而且对每个Topic,都有代表性的词以及一个比例。以Topic A为例,就是说所有对应到Topic A的词里面,有30%的词是broccoli。在LDA算法中,会把每一个文档中的每一个词对应到一个Topic,所以能算出上面这个比例。这些词为描述这个Topic起了一个很好的指导意义,我想这就是LDA区别于传统文本聚类的优势吧。
LDA整体流程
先定义一些字母的含义:
文档集合D,topic集合T
D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词。(LDA里面称之为word bag,实际上每个单词的出现位置对LDA算法无影响)
D中涉及的所有不同单词组成一个大集合VOCABULARY(简称VOC)
LDA以文档集合D作为输入(会有切词,去停用词,取词干等常见的预处理,略去不表),希望训练出的两个结果向量(设聚成k个Topic,VOC中共包含m个词):
对每个D中的文档d,对应到不同topic的概率θd < pt1,..., ptk >,其中,pti表示d对应T中第i个topic的概率。计算方法是直观的,pti=nti/n,其中nti表示d中对应第i个topic的词的数目,n是d中所有词的总数。
对每个T中的topic t,生成不同单词的概率φt < pw1,..., pwm >,其中,pwi表示t生成VOC中第i个单词的概率。计算方法同样很直观,pwi=Nwi/N,其中Nwi表示对应到topic t的VOC中第i个单词的数目,N表示所有对应到topic t的单词总数。
LDA的核心公式如下:
p(w|d) = p(w|t)*p(t|d)
直观的看这个公式,就是以Topic作为中间层,可以通过当前的θd和φt给出了文档d中出现单词w的概率。其中p(t|d)利用θd计算得到,p(w|t)利用φt计算得到。
实际上,利用当前的θd和φt,我们可以为一个文档中的一个单词计算它对应任意一个Topic时的p(w|d),然后根据这些结果来更新这个词应该对应的topic。然后,如果这个更新改变了这个单词所对应的Topic,就会反过来影响θd和φt。
LDA算法开始时,先随机地给θd和φt赋值(对所有的d和t)。然后上述过程不断重复,最终收敛到的结果就是LDA的输出。用数学语言描述就是如下过程

转化成概率图模型表示就是

图中K为主题个数,M为文档总数,是第m个文档的单词总数。 是每个Topic下词的多项分布的Dirichlet先验参数, 是每个文档下Topic的多项分布的Dirichlet先验参数。是第m个文档中第n个词的主题,是m个文档中的第n个词。剩下来的两个隐含变量和分别表示第m个文档下的Topic分布和第k个Topic下词的分布,前者是k维(k为Topic总数)向量,后者是v维向量(v为词典中term总数)。

三.用Gibbs Sampling学习LDA

Gibbs Sampling的流程:LDA中的变量,和都是未知的隐含变量,也是我们需要根据观察到的文档集合中的词来学习估计的,那么如何来学习估计呢?这就是概率图模型的Inference问题。主要的算法分为exact inference和approximate inference两类。尽管LDA是最简单的Topic Model, 但是其用exact inference还是很困难的,一般我们采用approximate inference算法来学习LDA中的隐含变量。比如LDA原始论文Blei02中使用的mean-field variational expectation maximisation 算法和Griffiths02中使用的Gibbs Sampling,其中Gibbs Sampling 更为简单易懂。
Gibbs Sampling 是Markov-Chain Monte Carlo算法的一个特例。这个算法的运行方式是每次选取概率向量的一个维度,给定其他维度的变量值Sample当前维度的值。不断迭代,直到收敛输出待估计的参数。可以图示如下

初始时随机给文本中的每个单词分配主题,然后统计每个主题z下出现term t的数量以及每个文档m下出现主题z中的词的数量,每一轮计算,即排除当前词的主题分配,根据其他所有词的主题分配估计当前词分配各个主题的概率。当得到当前词属于所有主题z的概率分布后,根据这个概率分布为该词sample一个新的主题。然后用同样的方法不断更新下一个词的主题,直到发现每个文档下Topic分布和每个Topic下词的分布收敛,算法停止,输出待估计的参数和,最终每个单词的主题也同时得出。

用Gibbs Sampling 学习LDA参数的算法伪代码如下

四.LDA开源工具GibbsLDA++
GibbsLDA++说明文档写的很清晰易懂,这里只说下输出模型。
<model_name>.others:LDA模型的一些参数。α、βLDA的先验参数、ntopics主题数、liter采样迭代次数
<model_name>.phi:This file contains the word-topic distributions, i.e., p(wordw|topict). Each line is a topic, each column is a word in the vocabulary
<model_name>.theta:This file contains the topic-document distributions, i.e., p(topict|documentm). Each line is a document and each column is a topic.
<model_name>.tassign:This file contains the topic assignments for words in training data. Each line is a document that consists of a list of <wordij>:<topic of wordij>
<model_name>.twords:This file contains twords most likely words of each topic.

case study示例:
学习:src/lda -est -alpha 0.5 -beta 0.1 -ntopics 100 -niters 1000 -savestep 100 -twords 20 -dfile models/casestudy/ trndocs.dat
预测:src/lda -inf -dir models/casestudy/ -model model-01800 -niters 30 -twords 20 -dfile newdocs.dat

F. 自然语言处理的相关技术

数据稀疏与平滑技术
大规模数据统计方法与有限的训练语料之间必然产生数据稀疏问题,导致零概率问题,符合经典的zip'f定律。如IBM, Brown:366M英语语料训练trigram,在测试语料中,有14.7%的trigram和2.2%的bigram在训练语料中未出现。
数据稀疏问题定义:“The problem of data sparseness, alsoknown as the zero-frequency problem ariseswhen analyses contain configurations thatnever occurred in the training corpus. Then it isnot possible to estimate probabilities from observedfrequencies, and some other estimation schemethat can generalize (that configurations) from thetraining data has to be used. —— Dagan”。
人们为理论模型实用化而进行了众多尝试与努力,诞生了一系列经典的平滑技术,它们的基本思想是“降低已出现n-gram条件概率分布,以使未出现的n-gram条件概率分布非零”,且经数据平滑后一定保证概率和为1,详细如下: Add-one(Laplace) Smoothing 加一平滑法,又称拉普拉斯定律,其保证每个n-gram在训练语料中至少出现1次,以bigram为例,公式如图:

其中,V是所有bigram的个数。 Good-Turing Smoothing 其基本思想是利用频率的类别信息对频率进行平滑。调整出现频率为c的n-gram频率为c*:

直接的改进策略就是“对出现次数超过某个阈值的gram,不进行平滑,阈值一般取8~10”,其他方法请参见“Simple Good-Turing”。 InterpolationSmoothing 不管是Add-one,还是Good Turing平滑技术,对于未出现的n-gram都一视同仁,难免存在不合理(事件发生概率存在差别),所以这里再介绍一种线性插值平滑技术,其基本思想是将高阶模型和低阶模型作线性组合,利用低元n-gram模型对高元n-gram模型进行线性插值。因为在没有足够的数据对高元n-gram模型进行概率估计时,低元n-gram模型通常可以提供有用的信息。公式如下如右图1:

扩展方式(上下文相关)为如右图2:
λs可以通过EM算法来估计,具体步骤如下: 首先,确定三种数据:Training data、Held-out data和Test data; 然后,根据Training data构造初始的语言模型,并确定初始的λs(如均为1); 最后,基于EM算法迭代地优化λs,使得Held-out data概率(如下式)最大化。

G. 机器学习需要什么数学基础

阅读全文

与em算法介绍相关的资料

热点内容
手游我的世界租的服务器怎么添加mod 浏览:552
java中的Ascii 浏览:497
php白盒测试工具 浏览:574
男人命令女人 浏览:166
全球编程语言排名 浏览:785
某百度程序员中午面试 浏览:614
程序员刘亦菲的样子 浏览:303
java获取服务器的时间格式 浏览:69
什么是java中的多态 浏览:330
html包含php文件 浏览:359
程序员睡觉少感觉不到困 浏览:921
空调压缩机工作电压 浏览:202
梦幻西游浙江二区服务器云主机 浏览:250
什么样的人才叫程序员 浏览:125
ipad如何解压缩文件下载 浏览:225
知网程序员 浏览:706
怎么把电子版投标报价加密 浏览:33
电脑安全编译器 浏览:369
在服务器里如何调创造 浏览:839
知云登录为什么找不到服务器 浏览:819