A. 大数据技术包括哪些
想要成为炙手可热的大数据技术人才,这些大数据的核心技术一定要知晓!
一、大数据基础阶段
大数据基础阶段需掌握的技术有:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis以及hadoop maprece hdfs yarn等。
1、Linux命令
对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令
2、 Redis
Redis是一个key-value存储系统,其出现很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用,它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便,大数据开发需掌握Redis的安装、配置及相关使用方法。
二、大数据存储阶段
大数据存储阶段需掌握的技术有:hbase、hive、sqoop等。
1、HBase
HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。
2、Hive
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapRece任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。
三、大数据架构设计阶段
大数据架构设计阶段需掌握的技术有:Flume分布式、Zookeeper、Kafka等。
1、Kafka
Kafka是一种高吞吐量的分布式发布订阅消息系统,其在大数据开发应用上的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。大数据开发需掌握Kafka架构原理及各组件的作用和使用方法及相关功能的实现!
2、Flume
Flume是一款高可用、高可靠、分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。大数据开发需掌握其安装、配置以及相关使用方法。
3、ZooKeeper
ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。
四、大数据实时计算阶段
大数据实时计算阶段需掌握的技术有:Mahout、Spark、storm。
1、Spark
Spark是专为大规模数据处理而设计的快速通用的计算引擎,其提供了一个全面、统一的框架用于管理各种不同性质的数据集和数据源的大数据处理的需求,大数据开发需掌握Spark基础、SparkJob、Spark RDD、spark job部署与资源分配、Spark shuffle、Spark内存管理、Spark广播变量、Spark SQL、Spark Streaming以及Spark ML等相关知识。
2、storm
Storm为分布式实时计算提供了一组通用原语,可被用于“流处理”之中,实时处理消息并更新数据库。这是管理队列及工作者集群的另一种方式。Storm可以方便地在一个计算机集群中编写与扩展复杂的实时计算,Storm用于实时处理,就好比 Hadoop 用于批处理。Storm保证每个消息都会得到处理,而且它很快——在一个小集群中,每秒可以处理数以百万计的消息。
五、大数据数据采集阶段
大数据数据采集阶段需掌握的技术有:Python、Scala。
1、Python与数据分析
Python是面向对象的编程语言,拥有丰富的库,使用简单,应用广泛,在大数据领域也有所应用,主要可用于数据采集、数据分析以及数据可视化等,因此,大数据开发需学习一定的Python知识。
2、Scala
Scala是一门多范式的编程语言,大数据开发重要框架Spark是采用Scala语言设计的,想要学好Spark框架,拥有Scala基础是必不可少的,因此,大数据开发需掌握Scala编程基础知识!
以上只是一些简单的大数据核心技术总结,比较零散,想要学习大数据的同学,还是要按照一定到的技术路线图学习!
B. 大数据分析之聚类算法
大数据分析之聚类算法
1. 什么是聚类算法
所谓聚类,就是比如给定一些元素或者对象,分散存储在数据库中,然后根据我们感兴趣的对象属性,对其进行聚集,同类的对象之间相似度高,不同类之间差异较大。最大特点就是事先不确定类别。
这其中最经典的算法就是KMeans算法,这是最常用的聚类算法,主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。
KMeans算法本身思想比较简单,但是合理的确定K值和K个初始类簇中心点对于聚类效果的好坏有很大的影响。
聚类算法实现
假设对象集合为D,准备划分为k个簇。
基本算法步骤如下:
1、从D中随机取k个元素,作为k个簇的各自的中心。
2、分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇。
3、根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数。
4、将D中全部元素按照新的中心重新聚类。
5、重复第4步,直到聚类结果不再变化。
6、将结果输出。
核心Java代码如下:
/**
* 迭代计算每个点到各个中心点的距离,选择最小距离将该点划入到合适的分组聚类中,反复进行,直到
* 分组不再变化或者各个中心点不再变化为止。
* @return
*/
public List[] comput() {
List[] results = new ArrayList[k];//为k个分组,分别定义一个聚簇集合,未来放入元素。
boolean centerchange = true;//该变量存储中心点是否发生变化
while (centerchange) {
iterCount++;//存储迭代次数
centerchange = false;
for (int i = 0; i < k; i++) {
results[i] = new ArrayList<T>();
}
for (int i = 0; i < players.size(); i++) {
T p = players.get(i);
double[] dists = new double[k];
for (int j = 0; j < initPlayers.size(); j++) {
T initP = initPlayers.get(j);
/* 计算距离 这里采用的公式是两个对象相关属性的平方和,最后求开方*/
double dist = distance(initP, p);
dists[j] = dist;
}
int dist_index = computOrder(dists);//计算该点到各个质心的距离的最小值,获得下标
results[dist_index].add(p);//划分到对应的分组。
}
/*
* 将点聚类之后,重新寻找每个簇的新的中心点,根据每个点的关注属性的平均值确立新的质心。
*/
for (int i = 0; i < k; i++) {
T player_new = findNewCenter(results[i]);
System.out.println("第"+iterCount+"次迭代,中心点是:"+player_new.toString());
T player_old = initPlayers.get(i);
if (!IsPlayerEqual(player_new, player_old)) {
centerchange = true;
initPlayers.set(i, player_new);
}
}
}
return results;
}
上面代码是其中核心代码,我们根据对象集合List和提前设定的k个聚集,最终完成聚类。我们测试一下,假设要测试根据NBA球员的场均得分情况,进行得分高中低的聚集,很简单,高得分在一组,中等一组,低得分一组。
我们定义一个Player类,里面有属性goal,并录入数据。并设定分组数目为k=3。
测试代码如下:
List listPlayers = new ArrayList();
Player p1 = new Player();
p1.setName(“mrchi1”);
p1.setGoal(1);
p1.setAssists(8);
listPlayers.add(p1);
Player p2 = new Player();
p2.setName("mrchi2");
p2.setGoal(2);
listPlayers.add(p2);
Player p3 = new Player();
p3.setName("mrchi3");
p3.setGoal(3);
listPlayers.add(p3);
//其他对象定义此处略。制造几个球员的对象即可。
Kmeans<Player> kmeans = new Kmeans<Player>(listPlayers, 3);
List<Player>[] results = kmeans.comput();
for (int i = 0; i < results.length; i++) {
System.out.println("类别" + (i + 1) + "聚集了以下球员:");
List<Player> list = results[i];
for (Player p : list) {
System.out.println(p.getName() + "--->" + p.getGoal()
}
}
算法运行结果:
可以看出中心点经历了四次迭代变化,最终分类结果也确实是相近得分的分到了一组。当然这种算法有缺点,首先就是初始的k个中心点的确定非常重要,结果也有差异。可以选择彼此距离尽可能远的K个点,也可以先对数据用层次聚类算法进行聚类,得到K个簇之后,从每个类簇中选择一个点,该点可以是该类簇的中心点,或者是距离类簇中心点最近的那个点。
C. 大数据挖掘的算法有哪些
大数据挖掘的算法:
1.朴素贝叶斯,超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。
2. Logistic回归,LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。与决策树与支持向量机不同,NB有很好的概率解释,且很容易利用新的训练数据来更新模型。如果你想要一些概率信息或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的。
3.决策树,DT容易理解与解释。DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题,DT的主要缺点是容易过拟合,这也正是随机森林等集成学习算法被提出来的原因。
4.支持向量机,很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。SVM在维数通常很高的文本分类中非常的流行。
如果想要或许更多更详细的讯息,建议您去参加CDA数据分析课程。大数据分析师现在有专业的国际认证证书了,CDA,即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。点击预约免费试听课。
D. 大数据的数据分析方法有哪些如何学习
漏斗分析法
漏斗分析模型是业务分析中的重要方法,最常见的是应用于营销分析中,由于营销过程中的每个关键节点都会影响到最终的结果,所以在精细化运营应用广泛的今天,漏斗分析方法可以帮助我们把握每个转化节点的效率,从而优化整个业务流程。
对比分析法
对比分析法不管是从生活中还是工作中,都会经常用到,对比分析法也称比较分析法,是将两个或两个以上相互联系的指标数据进行比较,分析其变化情况,了解事物的本质特征和发展规律。
在数据分析中,常用到的分3类:时间对比、空间对比以及标准对比。
用户分析法
用户分析是互联网运营的核心,常用的分析方法包括:活跃分析,留存分析,用户分群,用户画像等。在刚刚说到的RARRA模型中,用户活跃和留存是非常重要的环节,通过对用户行为数据的分析,对产品或网页设计进行优化,对用户进行适当引导等。
通常我们会日常监控“日活”、“月活”等用户活跃数据,来了解新增的活跃用户数据,了解产品或网页是否得到了更多人的关注,但是同时,也需要做留存分析,关注新增的用户是否真正的留存下来成为固定用户,留存数据才是真正的用户增长数据,才能反映一段时间产品的使用情况,关于活跃率、留存率的计算。
细分分析法
在数据分析概念被广泛重视的今天,粗略的数据分析很难真正发现问题,精细化数据分析成为真正有效的方法,所以细分分析法是在本来的数据分析上做的更为深入和精细化。
指标分析法
在实际工作中,这个方法应用的最为广泛,也是在使用其他方法进行分析的同时搭配使用突出问题关键点的方法,指直接运用统计学中的一些基础指标来做数据分析,比如平均数、众数、中位数、最大值、最小值等。在选择具体使用哪个基础指标时,需要考虑结果的取向性。
E. 大数据的分析手段有都有哪几种
1.分类
分类是一种基本的数据分析方式,数据根据其特点,可将数据对象划分为不同的部分和类型,再进一步分析,能够进一步挖掘事物的本质。
2.回归
回归是一种运用广泛的统计分析方法,可以通过规定因变量和自变量来确定变量之间的因果关系,然后建立回归模型,并且根据实测数据来求解模型的各个参数,之后再评价回归模型是否可以拟合实测数据,如果能够很好的拟合,则可以根据自变量作进一步预测。
3.聚类
聚类是根据数据的内在性质将数据分成一些聚合类,每一聚合类中的元素尽可能具有相同的特性,不同聚合类之间的特性差别尽可能大的一种分类方式,其与分类分析不同,所划分的类是未知的,因此,聚类分析也称为无指导或无监督的学习。
4.相似匹配
相似匹配是通过一定的方法,来计算两个数据的相似程度,相似程度通常会用一个是百分比来衡量。相似匹配算法被用在很多不同的计算场景,如数据清洗、用户输入纠错、推荐统计、剽窃检测系统、自动评分系统、网页搜索和DNA序列匹配等领域。
5.频繁项集
频繁项集是指事例中频繁出现的项的集合,如啤酒和尿不湿,Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集,目前已被广泛的应用在商业、网络安全等领域。
6.统计描述
统计描述是根据数据的特点,用一定的统计指标和指标体系,表明数据所反馈的信息,是对数据分析的基础处理工作,主要方法包括:平均指标和变异指标的计算、资料分布形态的图形表现等。
关于大数据的分析手段有都有哪几种,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于大数据的分析手段有都有哪几种?的相关内容,更多信息可以关注环球青藤分享更多干货
F. 大数据分析方法分哪些类
CDA大数据课程设计比较全面,业务逻辑和大数据技术都有,出来就是复合型人才.
第一部分 大数据平台:
大数据平台包含了采集层、存储层、计算层和应用层,是一个复杂的IT系统,需要学会Hadoop等分布式系统的开发技能。
1.1采集层:Sqoop可用来采集导入传统关系型数据库的数据、Flume对于日志型数据采集,另外使用Python一类的语言开发网络爬虫获取网络数据;
1.2储存层:分布式文件系统HDFS最为常用;
1.3计算层:有不同的计算框架可以选择,常见的如MapRece、Spark等,一般来讲,如果能使用计算框架的“原生语言”,运算效率会最高(MapRece的原生支持Java,而Spark原生支持Scala);
1.4应用层:包括结果数据的可视化、交互界面开发以及应用管理工具的开发等,更多的用到Java、Python等通用IT开发前端、后端的能力;
第二部分 大数据分析:
大数据挖掘指的是利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换
2.1数据分析方法论:统计基础 微积分(求导)代数(矩阵运算)等
2.2统计模型:方差分析、线性回归、逻辑回归、列联分析、聚类分析、面板模型等
2.3数据挖掘模型:决策树 关联分析、SVM、神经网络 贝叶斯网络等
G. 大数据分析方法有哪些
1、因子分析方法
所谓因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如影像分析法,重心法、最大似然法、最小平方法、α抽因法、拉奥典型抽因法等等。
2、回归分析方法
回归分析方法就是指研究一个随机变量Y对另一个(X)或一组变量的相依关系的统计分析方法。回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。回归分析方法运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
3、相关分析方法
相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系。
4、聚类分析方法
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,不需要事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。
5、方差分析方法
方差数据方法就是用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显着影响的变量。
6、对应分析方法
对应分析是通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。