导航:首页 > 文件处理 > 有机液体氢能压缩吗

有机液体氢能压缩吗

发布时间:2022-06-18 04:00:51

A. 氢原子可以压缩成固体吗固体氢能参与核聚变吗谢谢拉

可以,不是氢原子压缩成了固体而是氢气可以固化,方法就是降温,加压。关于核聚变,它是可以参与的,核聚变,即氢原子核(氘和氚)结合成较重的原子核(氦)时放出巨大的能量。

B. 有关氢能的知识

氢能
开放分类: 氢能

什么是氢能

氢能在二十一世纪有可能在世界能源舞台上成为一种举足轻重的二次能源。它是一种极为优越的新能源,其主要优点有:燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源,演义了自然物质循环利用、持续发展的经典过程。

前景
[编辑本段]

氢是宇宙中分布最广泛的物质,它构成了宇宙质量的75%,因此氢能被称为人类的终极能源。水是氢的大“仓库”,如把海水中的氢全部提取出来,将是地球上所有化石燃料热量的9000 倍。氢的燃烧效率非常高,只要在汽油中加入4% 的氢气,就可使内燃机节油40%。目前,氢能技术在美国、日本、欧盟等国家和地区已进入系统实施阶段。美国政府已明确提出氢计划,宣布今后4年政府将拨款17亿美元支持氢能开发。美国计划到2040年美国每天将减少使用1100万桶石油,这个数字正是现在美国每天的石油进口量。
——————————————————————————————————
氢能 【hydrogen energy】 通过氢气和氧气反应所产生的能量。氢能是氢的化学能,氢在地球上主要以化合态的形式出现,是宇宙中分布最广泛的物质,它构成了宇宙质量的75%。由于氢气必须从水、化石燃料等含氢物质中制得,因此是二次能源。工业上生产氢的方式很多,常见的有水电解制氢、煤炭气化制氢、重油及天然气水蒸气催化转化制氢等。氢能具有以下主要优点:燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源。目前,氢能技术在美国、日本、欧盟等国家和地区已进入系统实施阶段。

氢能的开发与利用
[编辑本段]

氢能利用各方面
氢能利用方面很多,有的已经实现,有的人们正在努力追求。为了达到清洁新能源的目标,氢的利用将充满人类生活的方方面面,我们不妨从古到今,把氢能的主要用途简要叙述一下。
依靠氢能可上天
古代,秦始皇统一中国,他想长生不老,曾积极支持炼丹术。其实炼丹术士最早接触的就是氢的金属化合物。无奈多少帝王梦想长生不老,或幻想遨游太空,都受当时的科学技术水平所限,真是登天无梯。到后来,1869年俄国着名学者门捷列夫整理出化学元素周期表,他把氢元素放在周期表的首位,此后从氢出发,寻找与氢元素之间的关系,为众多的元素打下了基础,人们则氢的研究和利用也就更科学化了。至1928年,德国齐柏林公司利用氢的巨大浮力,制造了世界上第一艘“LZ—127齐柏林”号飞艇,首次把人们从德国运送到南美洲,实现了空中飞渡大西洋的航程。大约经过了十年的运行,航程16万多公里,使1.3万人领受了上天的滋味,这是氢气的奇迹。
然而,更先进的是本世纪50年代,美国利用液氢作超音速和亚音速飞机的燃料,使B57双引擎辍炸机改装了氢发动机,实现了氢能飞机上天。特别是1957前苏联宇航员加加林乘坐人造地球卫星遨游太空和1963年美国的宇宙飞船上天,紧接着1968年阿波罗号飞船实现了人类首次登上月球的创举。这一切都依靠着氢燃料的功劳。面向科学的21世纪,先进的高速远程氢能飞机和宇航飞船,商业运营的日子已为时不远。过去帝王的梦想将被现代的人们实现。
利用氢能可开车
以氢气代替汽油作汽车发动机的燃料,已经过日本、美国、德国等许多汽世公司的试验,技术是可行的,目前主要是廉价氢的来源问题。氢是一种高效燃料,每公斤氢燃烧所产生的能量为33.6千瓦小时,几乎等于汽车燃烧的2.8倍。氢气燃烧不仅热值高,而且火焰传播速度快,点火能量低(容易点着),所以氢能汽车比汽油汽车总的燃料利用效率可高20%。当然,氢的燃烧主要生成物是水,只有极少的氮氧化物,绝对没有汽油燃烧时产生的一氧化碳、二氧化碳和二氧化硫等污染环境的有害成分。氢能汽车是最清洁的理想交通工具。
氢能汽车的供氢问题,目前将以金属氢化物为贮氢材料,释放氢气所需的热可由发动机冷却水和尾气余热提供。现在有两种氢能汽车,一种是全烧氢汽车,另一种为氢气与汽油混烧的掺氢汽车。掺氢汽车的发动机只要稍加改变或不改变,即可提高燃料利用率和减轻尾气污染。使用掺氢5%左右的汽车,平均热效率可提高15%,节约汽油30%左右。因此,近期多使用掺氢汽车,待氢气可以大量供应后,再推广全燃氢汽车。德国奔驰汽车公司已陆续推出各种燃氢汽车,其中有面包车、公共汽车、邮政车和小轿车。以燃氢面包车为例,使用200公斤钛铁合金氢化物为燃料箱,代替65升汽油箱,可连续行车130多公里。德国奔驰公司制造的掺氢汽车,可在高速公路上行驶,车上使用的储氢箱也是钛铁合金氢化物。
掺氢汽车的特点是汽油和氢气的混合燃料可以在稀薄的贫油区工作,能改善整个发动机的燃烧状况。在我国许当城市交通拥挤,汽车发动机多处于部分负荷下运行、采用掺氢汽车尤为有利。特别是有些工业余氢(如合成氨生产)未能回收利用,若作为掺氢燃料,其经济效益和环境效益都是可取的。
燃烧氢气能发电
大型电站,无论是水电、火电或核电,都是把发出的电送往电网,由电网输送给用户。但是各种用电户的负荷不同,电网有时是高峰,有时是低谷。为了调节峰荷、电网中常需要启动快和比较灵活的发电站,氢能发电就最适合抢演这个角色。利用氢气和氧气燃烧,组成氢氧发电机组。这种机组是火箭型内燃发动机配以发电机,它不需要复杂的蒸汽锅炉系统,因此结构简单,维修方便,启动迅速,要开即开,欲停即停。在电网低负荷的,还可吸收多余的电来进行电解水,生产氢和氧,以备高峰时发电用。这种调节作用对于用网运行是有利的。另外,氢和氧还可直接改变常规火力发电机组的运行状况,提高电站的发电能力。例如氢氧燃烧组成磁流体发电,利用液氢冷却发电装置,进而提高机组功率等。
更新的氢能发电方式是氢燃料电池。这是利用氢和氧(成空气)直接经过电化学反应而产生电能的装置。换言之,也是水电解槽产生氢和氧的逆反应。70年代以来,日美等国加紧研究各种燃料电池,现已进入商业性开发,日本已建立万千瓦级燃料电池发电站,美国有30多家厂商在开发燃料电池.德、英、法、荷、丹、意和奥地利等国也有20多家公司投入了燃料电池的研究,这种新型的发电方式已引起世界的关注。
燃料电池的简单原最巧是将燃料的化学能直接转换为电能,不需要进行燃烧,能源转换效率可达60%—80%,而且污染少,噪声小,装置可大可小,非常灵活。最早,这种发电装置很小,造价很高,主要用于宇航作电源。现在已大幅度降价,逐步转向地面应用。目前,燃料电池的种类很多,主要有以下几种:
磷酸盐型燃料电池
磷酸盐型燃料电池是最早的一类燃料电池,工艺流程基本成熟,美国和日本已分别建成4500千瓦及11 000千瓦的商用电站。这种燃料电池的操作温度为200℃,最大电流密度可达到150毫安/平方厘米,发电效率约45%,燃料以氢、甲醇等为宜,氧化剂用空气,但催化剂为铂系列,目前发电成本尚高,每千瓦小时约40~50美分。
融熔碳酸盐型燃料电池
融熔碳酸盐型燃料电池一般称为第二代燃料电池,其运行温度650℃左右,发电效率约55%,日本三菱公司已建成10千瓦级的发电装置。这种燃料电池的电解质是液态的,由于工作温度高,可以承受一氧化碳的存在,燃料可用氢、一氧化碳、天然气等均可。氧化剂用空气。发电成本每千瓦小时可低于40美分。
固体氧化物型燃料电池
固体氧化物型燃料电池被认为是第三代燃料电池,其操作温度1000℃左右,发电效率可超过60%,目前不少国家在研究,它适于建造大型发电站,美国西屋公司正在进行开发,可望发电成本每千瓦小时低于20美分。
此外,还有几种类型的燃料电池,如碱性燃料电池,运行温度约200℃,发电效率也可高达60%,且不用贵金属作催化剂,瑞典已开发200千瓦的一个装置用于潜艇。美国最早用于阿波罗飞船的一种小型燃料电池称为美国型,实为离子交换膜燃料电池,它的发电效率高达75%,运行温度低于100℃,但是必需以纯氧作氧化剂。后来,美国又研制一种用于氢能汽车的燃料电池,充一次氢可行300公里,时速可达100公里,这是一种可逆式质子交换膜燃料电池,发电效率最高达80%。
燃料电池理想的燃料是氢气,因为它是电解制氢的逆反应。燃料电池的主要用途除建立固定电站外,特别适合作移动电源和车船的动力,因此也是今后氢能利用的孪生兄弟。
家庭用氢真方便
随着制氢技术的发展和化石能源的缺少,氢能利用迟早将进入家庭,首先是发达的大城市,它可以像输送城市煤气一样,通过氢气管道送往千家万户。每个用户则采用金属氢化物贮罐将氢气贮存,然后分别接通厨房灶具、浴室、氢气冰箱、空调机等等,并且在车库内与汽车充氢设备连接。人们的生活靠一条氢能管道,可以代替煤气、暖气甚至电力管线,连汽车的加油站也省掉了。这样清洁方便的氢能系统,将给人们创造舒适的生活环境,减轻许多繁杂事务
作为新能源,其安全性受到人们的普遍关注。从技术方面讲,氢的使用是绝对安全的。氢在空气中的扩散性很强,氢泄漏或燃烧时,可以很快地垂直升到空气中并消失得无影无踪,氢本身没有毒性及放射性,不会对人体产生伤害,也不会产生温室效应。科学家已经做过大量的氢能安全试验,证明氢是安全的燃料。如在汽车着火试验中,分别将装有氢气和天然汽油燃料罐点燃,结果氢气作为燃料的汽车着火后,氢气剧烈燃烧,但火焰总是向上得,对汽车的损坏比较缓慢,车内人员有较长得时间逃生,而天然燃料的汽车着火后,由于天然气比空气重,火焰向汽车四周蔓延,很快包围了汽车,伤及车内人员的安全。

C. 氢能的特点

氢位于元素周期表之首,它的原子序数为1,在常温常压下为气态,在超低温高压下又可成为液态。作为能源,氢有以下特点:
(l)所有元素中,氢重量最轻。在标准状态下,它的密度为0.0899g/l;在-252.7°C时,可成为液体,若将压力增大到数百个大气压,液氢就可变为固体氢。
(2)所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,因此在能源工业中氢是极好的传热载体。
(3)氢是自然界存在最普遍的元素,据估计它构成了宇宙质量的75%,除空气中含有氢气外,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质。据推算,如把海水中的氢全部提取出来,它所产生的总热量比地球上所有化石燃料放出的热量还大9000倍。
(4)除核燃料外氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,为142,351kJ/kg,是汽油发热值的3倍。
(5)氢燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快。
(6)氢本身无毒,与其他燃料相比氢燃烧时最清洁,除生成水和少量氨气外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氨气经过适当处理也不会污染环境,而且燃烧生成的水还可继续制氢,反复循环使用。
(7)氢能利用形式多,既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。用氢代替煤和石油,不需对现有的技术装备作重大的改造现在的内燃机稍加改装即可使用。
(8)氢可以以气态、液态或固态的氢化物出现,能适应贮运及各种应用环境的不同要求。
由以上特点可以看出氢是一种理想的新的含能体能源。目前液氢已广泛用作航天动力的燃料,但氢能的大规模的商业应用还有待解决以下关键问题:
廉价的制氢技术:因为氢是一种二次能源,它的制取不但需要消耗大量的能量,而且目前制氢效率很低,因此寻求大规模的廉价的制氢技术是各国科学家共同关心的问题。
安全可靠的贮氢和输氢方法 由于氢易气化、着火、爆炸,因此如何妥善解决氢能的贮存和运输问题也就成为开发氢能的关键。
许多科学家认为,氢能在二十一世纪有可能在世界能源舞台上成为一种举足轻重的二次能源。氢能是一种二次能源,因为它是通过一定的方法利用其它能源制取的,而不象煤、石油和天然气等可以直接从地下开采。在自然界中,氢易和氧结合成水,必须用电分解的方法把氢从水中分离出来。如果用煤、石油和天然气等燃烧所产生的热转换成的电支分解水制氢,那显然是划不来的。现在看来,高效率的制氢的基本途径,是利用太阳能。如果能用太阳能来制氢,那就等于把无穷无尽的、分散的太阳能转变成了高度集中的干净能源了,其意义十分重大。目前利用太阳能分解水制氢的方法有太阳能热分解水制氢、太阳能发电电解水制氢、阳光催化光解水制氢、太阳能生物制氢等等。利用太阳能制氢有重大的现实意义,但这却是一个十分困难的研究课题,有大量的理论问题和工程技术问题要解决,然而世界各国都十分重视,投入不少的人力、财力、物力,并且也已取得了多方面的进展。因此在以后,以太阳能制得的氢能,将成为人类普遍使用的一种优质、干净的燃料。

D. 氢能不能通过压缩体积液化

氢气可以通过压缩而液化。比如液体燃料火箭,使用的就是压缩后的液态氧气和氢气。

E. 氢能油燃料是一种液体燃料,氢能油是真的吗,常温

是真的,准确来说,氢能油就是市面上的醇基燃料别名。但是事实上他是危化品的
比甲醇精甲醇的成本更低的。并且总的用下来也是更节约的,闪点是大于93,明火是直接点不燃的

F. 氢能汽车的储氢方法

传统储氢方法有两种,一种方法是利用高压钢瓶(氢气瓶)来储存氢气,但钢瓶储存氢气的容积小,而且还有爆炸的危险;另一种方法是储存液态氢,但液体储存箱非常庞大,需要极好的绝热装置来隔热。一种新型简便的储氢方法应运而生,即利用储氢合金(金属氢化物)来储存氢气。 这些会“吸收”氢气的金属,称为储氢合金。其储氢能力很强。单位体积储氢的密度,是相同温度、压力条件下气态氢的1000倍,也即相当于储存了1000个大气压的高压氢气。储氢合金都是固体,需要用氢时通过加热或减压使储存于其中的氢释放出来,因此是一种极其简便易行的理想储氢方法。研究发展中的储氢合金,主要有钛系储氢合金、锆系储氢合金、铁系储氢合金及稀土系储氢合金。研究证明,在一定的温度和压力条件下,一些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量。其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来。
储氢合金还有将储氢过程中的化学能转换成机械能或热能的能量转换功能。储氢合金在吸氢时放热,在放氢时吸热,利用这种放热-吸热循环,可进行热的储存和传输,制造制冷或采暖设备。此外它还可以用于提纯和回收氢气,它可将氢气提纯到很高的纯度。例如,采用储氢合金,可以以很低的成本获得纯度高于99.9999%的超纯氢。 储氢合金的飞速发展,给氢气的利用开辟了一条广阔的道路。中国已研制成功了一种氢能汽车,它使用储氢材料90千克,可行驶40千米,时速超过50千米。今后,不但汽车会采用燃料电池,飞机、舰艇、宇宙飞船等运载工具也将使用燃料电池,作为其主要或辅助能源。另外由于大量使用的镍镉电池(Ni-Cd)中的镉有毒,使废电池处理复杂,环境受到污染。镍氢电池与镍镉电池相比,具有容量大、安全无毒和使用寿命长等优点。发展用储氢合金制造的镍氢电池(Ni-MH),也是未来储氢材料应用的另一个重要领域。

G. 关于氢能

1,电解电解质溶液制取,如NaCl
2,储存在高压钢瓶中。
3,氢气制取成本高,储存运输不方便

H. 氢能源的特点

氢能是公认的清洁能源,作为低碳和零碳能源正在脱颖而出。21世纪,我国和美国、日本、加拿大、欧盟等都制定了氢能发展规划,并且目前我国已在氢能领域取得了多方面的进展,在不久的将来有望成为氢能技术和应用领先的国家之一,也被国际公认为最有可能率先实现氢燃料电池和氢能汽车产业化的国家。
当今世界开发新能源迫在眉睫,原因是所用的能源如石油、天然气、煤,石油气均属不可再生资源,地球上存量有限,而人类生存又时刻离不开能源,所以必须寻找新的能源。随着化石燃料耗量的日益增加,其储量日益减少,终有一天这些资源、能源将要枯竭,这就迫切需要寻找一种不依赖化石燃料的储量丰富的新的含能体能源。氢正是这样一种在常规能源危机的出现和开发新的二次能源的同时,人们期待的新的二次能源。 氢位于元素周期表之首,原子序数为1,常温常压下为气态,超低温高压下为液态。作为一种理想的新的合能体能源,它具有以下特点:
重量最轻:标准状态下,密度为 0.0899g/l,-252.7℃时,可成为液体,若将压力增大到数百个大气压,液氢可变为金属氢。
导热性最好:比大多数气体的导热系数高出10倍。
普遍元色:据估计它构成了宇宙质量的 75%,除空气中含有氢气外,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质。据推算,如把海水中的氢全部提取出来,它所产生的总热量比地球上所有化石燃料放出的热量还大9000倍。
回收利用:利用氢能源的汽车排出的废物只是水,所以可以再次分解氢,再次回收利用。
理想的发热值:除核燃料外氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,为142,351kJ/kg,是汽油发热值的3倍。
燃烧性能好 :点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快
无毒:与其他燃料相比氢燃烧时最清洁,除生成水和少量氮化氢外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氮化氢经过适当处理也不会污染环境,且燃烧生成的水还可继续制氢,反复循环使用。产物水无腐蚀性,对设备无损。
利用形式多:既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。
多种形态:以气态、液态或固态的金属氢化物出现,能适应贮运及各种应用环境的不同要求。
耗损少:可以取消远距离高压输电,代以远近距离管道输氢,安全性相对提高,能源无效损耗减小
利用率高:氢取消了内燃机噪声源和能源污染隐患,利用率高。
运输方便:氢可以减轻燃料自重,可以增加运载工具有效载荷,这样可以降低运输成本从全程效益考虑社会总效益优于其他能源。
减少温室效应:氢取代化石燃料能最大限度地减弱温室效应

I. 氢能源是什么能源

氢能源是二次能源。

氢能是一种二次能源,它是通过一定的方法利用其它能源制取的,而不像煤、石油、天然气可以直接开采,今下几乎完全依靠化石燃料制取得到,如果能回收利用工程废氢,每年大约可以回收到大约1亿立方米,这个数字相当可观。

氢能源的优势:

8月9日世界上最大的气候变化报告中强调了加快氢吸收的必要性,加速采用氢的需求从未如此强烈。自然科学基金会发出了一个警告:在未来20年全球变暖水平可能会比工业化前上升1.5℃以上,而氢则是对抗全球变暖的潜在指示。

中国科协主席万钢说,如果说风电、光伏发电是当前新能源行业的主导力量,氢能源就是能源领域的未来之星。氢能将成为改变传统能源的终极目标,发展氢能产业是人类能源结构调整和产业结构转型的必由之路。

J. 氢能指得是什么有什么好处

氢能 【hydrogen energy】【】 通过氢气和氧气反应所产生的能量。氢能是氢的化学能,氢在地球上主要以化合态的形式出现,是宇宙中分布最广泛的物质,它构成了宇宙质量的75%。由于氢气必须从水、化石燃料等含氢物质中制得,因此是二次能源。工业上生产氢的方式很多,常见的有水电解制氢、煤炭气化制氢、重油及天然气水蒸气催化转化制氢等。氢能具有以下主要优点:燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源。目前,氢能技术在美国、日本、欧盟等国家和地区已进入系统实施阶段。

煤炭石油等矿物燃料的广泛使用,已对全球环境造成严重污染,甚至对人类自身的生存造成威
胁。同时矿物燃料的存量,是一个有限量,也会随着过度开采而枯竭。因此,当前在设法降低现有常
规能源(如煤、石油等)造成污染环境的同时,清洁能源的开发与应用是大势所趋。氢能是理想的清洁能源之一,已广泛引起人们的重视。氢不仅是一种清洁能源而且也是一种优良的能源载体,具有可储的特性。储能是合理利用能量的一种方式。太阳能、风能分散间歇发电装置及电网负荷的峰谷差或
有大量廉价电能能都可以转化为氢能储存,供需要时再使用,这种储能方式分散灵活。氢能也具有可
输的特性,如在一定条件下将电能转化为氢能,输氢较输电有一定的优越性。科学家认为,氢能在二
十一世纪能源舞台上将成为一种举足轻重的能源。
l、氢的产生途径
1.1电解水制氢.
水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的
逆过程,因此只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在
75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及使用寿命的延长,其用于制氢的前景不可估量。同时,太阳能、风能及海洋能等也可通过电制得氢气并用氢作为中间载能体来调节,贮存转化能量,使得对用户的能量供应更为灵活方便。供电系统在低谷时富余电能也可用于电解水制氢,达到储能的目的。我国各种规模的水电解制氢装置数以百计,但均为小型电解制氢设备,其目的均为制提氢气作料而非作为能源。随着氢能应用的逐步扩大,水电解制氢方法必将得到发展。
1.2矿物燃料制氢
以煤、石油及天然气为原料制取氢气是当今制取氢气是主要的方法。该方法在我国都具有成熟的工艺,并建有工业生产装置。
(1)煤为原料制取氢气
在我国能源结构中,在今后相当长一段时间内,煤炭还将是主要能源。如何提高煤的利用效率及
减少对环境的污染是需不断研究的课题,将煤炭转化为氢是其途径之一。
以煤为原料制取含氢气体的方法主要有两种:一是煤的焦化(或称高温干馏),二是煤的气化。焦化是指煤在隔绝空气条件下,在90-1000℃制取焦碳副产品为焦炉煤气。焦炉煤气组成中含氢气55-60%(体积)甲烷23-27%、一氧化碳6-8%等。每吨煤可得煤气300-350m3,可作为城市煤气,
亦是制取氢气的原料。煤的气化是指煤在高温常压或加压下,与气化剂反应转化成气体产物。气化
剂为水蒸汽或氧所(空气),气体产物中含有氢有等组份,其含量随不同气化方法而异。我国有大批中小型合成氢厂,均以煤为原料,气化后制得含氢煤气作为合成氨的原料。这是一种具有我国特点的取得氢源方法。采用OGI固定床式气化炉,可间歇操作生产制得水煤气。该装置投资小,操作容易,其气体产物组成主要是氢及一氧化碳,其中氢气可达60%以上,经转化后可制得纯氢。采用煤气化制氢方法,其设备费占投资主要部分。煤地下气化方法近数十年已为人们所重视。地下气化技术具有煤
资源利用率高及减少或避免地表环境破坏等优点。中国矿业大学余力等开发并完善了"长通道、大断
面、两阶段地下煤气化"生产水煤气的新工艺,煤气中氢气含量达50%以上,在唐山刘庄已进行工业性试运转,可日产水煤气5万m3,如再经转化及变压吸附法提纯可制得廉价氢气,该法在我国具有一定开发前景.我国对煤制氢技术的掌握已有良好的基础,特别是大批中小型合成氨厂的制氢装置遍布各地,为今后提供氢源创造了条件。我国自行开发的地下煤气化制水煤气获得廉价氢气的工艺已取得
阶段成果,具有开发前景,值得重视。
(2)以天然气或轻质油为原料制取氢气
该法是在催化剂存在下与水蒸汽反应转化制得氢气。主要发生下述反应:
CH4+H2O→CO+H2
CO+H2O→COZ+HZ
CnH2h+2+Nh2O→nCO+(Zh+l)HZ
反应在800-820℃下进行。从上述反应可知,也有部分氢气来自水蒸汽。用该法制得的气体组
成中,氢气含量可达74%(体积),其生产成本主要取决于原料价格,我国轻质油价格高,制气成本贵,采用受到限制。大多数大型合成氨合成甲醇工厂均采用天然气为原料,催化水蒸汽转化制氢的工艺。我国在该领域进行了大量有成效的研究工作,并建有大批工业生产装置。我国曾开发采用间歇式天然气蒸汽转化制氢工艺,制取小型合成氨厂的原料,这种方法不必用采高温合金转化炉,装置投资成本低。以石油及天然气为原料制氢的工艺已十分成熟,但因受原料的限制目前主要用于制取化工原
料。
(3)以重油为原料部分氧化法制取氢气
重油原料包括有常压、减压渣油及石油深度加工后的燃料油,重油与水蒸汽及氧气反应制得含氢
气体产物。部分重油燃烧提供转化吸热反应所需热量及一定的反应温度。该法生产的氢气产物成本
中,原料费约占三分之一,而重油价格较低,故为人们重视。我国建有大型重油部分氧化法制氢装置,用于制取合成氢的原料。
1.3生物质制氢
生物质资源丰富,是重要的可再生能源。生物质可通过气化和微生物制氢。
(1)生物质气化制氢
将生物质原料如薪柴、麦秸、稻草等压制成型,在气化炉(或裂解炉)中进行气化或裂解反应可制得含氢燃料。我国在生物质气化技术领域的研究已取得一定成果,在国外,由于转化技术的提高,生物质气化已能大规模生产水煤气,其氢气含量大大提高。
(2)微生物制氢
微生物制氢技术亦受人们的关注。利用微生物在常温常压下进行酶催反应可制得氢气。生物质
产氢主要有化能营养微生物产氢和光合微生物产氢两种。属于化能营养微生物的是各种发酵类型的
一些严格厌氧菌和兼性厌氧菌)发酵微生物放氢的原始基质是各种碳水化合物、蛋白质等。目前已有
利用碳水化合物发酵制氢的专利,并利用所产生的氢气作为发电的能源。光合微生物如微型藻类和
光合作用细菌的产氢过程与光合作用相联系,称光合产氢。
1.4其它合氢物质制氢
国外曾研究从硫化氢中制取氢气。我国有丰富的H25资源,如河北省赵兰庄油气田开采的天然气中H多含量高达90%以上,其储量达数千万吨,是一种宝贵资源,从硫化氢中制氢有各种方法,我国在90年代开展了多方面的研究,各种研究结果将为今后充分合理利用宝贵资源,提供清洁能源及
化工原料奠定基础。
1.5各种化工过程副产氢气的回收
多种化工过程如电解食盐制碱工业、发酵制酒工艺、合成氨化肥工业、石油炼制工业等均有大量
副产氢气,如能采取适当的措施进行氢气的分离回收,每年可得到数亿立方米的氢气。这是一项不容
忽视的资源,应设法加以回收利用。目前化工厂副产氢气的回收,可提供一种较为廉价的氢源,应予
以重视。
2、氢的解和运输
氢在一般条件下是以气态形式存在的,这就为贮存和运输带来了很大的困难。氢的贮存有三种
方法:高压气态贮存;低温液氢贮存;金属氢化物贮存。
2.l气态贮存
气态氢可贮存在地下库里,也可装人钢瓶中,为减小贮存体积,必须先将氢气压缩,为此需消耗较多的压缩功。一般一个充气压力为 20mp的高压钢瓶贮氢重量占只1.6%;供太空用的钛瓶储氢重量
也仅为5%。为提高贮氢量,目前正在研究一种微孔结构的储氢装置,它是一微型球床。微型球系薄
壁(1—10um),充满微孔(l0-10um),氢气贮存在微孔中,微型球可用塑料、玻璃、陶瓷或金属制造。
2.2、低温液氢贮存
将氢气冷却到-253℃,即可呈液态,然后,将其贮存在高真空的绝热容器中,液氢贮存工艺首先
用于宇航中,其贮存成本较贵,安全技术也比较复杂.高度绝热的贮氢容器是目前研究的重点,现在一种间壁间充满中孔微珠的绝热容器已经问世。这种二氧化硅的微珠导热系数极小,其颗粒又非常细
可完全抑制颗粒间的对流换热,将部分镀铝微珠(一般约为3%-5%)混入不镀铝的微珠中可有效地
切断辐射传热。这种新型的热绝缘容器不需抽真空,其绝热效果远优于普遍高真空的绝热容器,是一
种理想的液氢贮存罐,美国宇航局已广泛采用这种新型的贮氢容器。
2.3、金属氢化物贮存
氢与氢化金属之间可以进行可逆反应,当外界有热量加给金属氢化物时,它就分解为氢化金属并
放出氢气。反之氢和氢化金属构成氢化物时,氢就以固态结合的形式储于其中,用来贮氢的氢化金属
大多为由多种元素组成的合金。目前世界上己研究成功多种贮氢合金,它们大致可以分为四类:一是
稀土锎镍等,每公斤锎镍合金可贮氢153L。二是铁一钛系,它是目前使用最多的贮氢材料,其贮氢量
大,是前者的4倍,且价格低,活性大,还可在常温常压下释放氢,给使用带来很大的方便。三是镁系,这是吸氢量最大的金属元素,但它需要在287℃下才能释放氢,且吸收氢十分缓慢,因而使用上受限制。四是钒、铌、锆等多元素系,这类金属本身属稀贵金属,因此进一步研究氢化金属本身的化学物理性质,包括平衡压力一温度曲线、生成食转化反应速度,化学及机械稳定性等,寻求更好的贮氢材料仍是氢开发利用中值得注意的问题。带金属氢化物的贮氢装置既有固定式也有移动式,它们既可作为氢燃料和氢物料的供应来源,也可用于吸收废热,储存太阳能,还可作氢泵或氢压缩机使用。
2.4、氢气的运输
氢虽然有很好的可运输性,但不论是气态氢还是液氢,它们在使用过程中都存在在着不可忽视的
特殊问题,首先,由于氢特别轻,与其他燃料相比在运输和使用过程中单位能量所占的体积特别大,即使液态氢也是如此。其次,氢特别容易泄漏,以氢作燃料的汽车行驶试验证明,即使是真空密封的氢燃料箱,每24h的泄漏率就达2%,而汽油一般一个月才泄漏1%,因此对贮氢容器和输氢管道、接头、阀门都要采取特殊的密封措施。第三,液氢的温度极低,只要有一点滴掉在皮肤上就会发生严重的冻伤,因此在运输和使用过程中应特别注意采取各种安全措施。
3、氢能利用
早在第二次世界大战期间,氢即用作A—2火箭发动机的液体推进剂。1960年液氢首次用作航天动力燃料。1970年美国发射的"阿波罗"登月飞船使用的起飞火箭也是用液氢作燃料。现在氢已是火箭领域的常用燃料了。对现代航天飞机而言,减轻燃料自重,增加有效载何变得更为重要。氢的能量密度很高,是普遍汽油的3倍,这意味着燃料的自重可减轻2/3,这对航天飞机无疑是极为有利的。今天的航天飞机以氢作为发动机的推进剂,以纯氧分为氧化剂,液氢就装在外部推进剂桶内,每次发射需用 1450m3,重约100t。
现在科学家们正在研究一种"固态氢"的宇宙飞船。固态氢既作为飞船的结构材料,又作为飞船
的动力燃料。在飞行期间,飞船上所有的非重要零件都可以转作能源而"消耗掉"。这样飞船在宇宙
中就能飞行更长的时间。
氢是21世纪重要的能源载体。以氢为燃料的燃料电池,燃烧时氢与氧结合生成水,是一种洁净的发电技术,顺应了全球的环保大趋势。
当前,世界着名的汽车厂商,为发展环保型汽车,加紧更新传统的车用燃料,纷纷决定采用氢能,掀起了一场氢能汽车开发的热潮。实验证明,使用氢燃料电池的汽车排放的碳仅为常规内燃机的
30%,造成的大气污染仅为内燃机的5%,美国汽车工业协会预测,到2002年,美国将生产约50万-
100万辆氢能汽车。
除汽车外,200年开始,美国、欧洲和日本将在飞机上推广氢燃料。据欧洲空中客车飞机公司预
测,最迟将于2002年,欧洲生产的飞机可大规模采用液氢为燃料。由于液态氢的工作温度为-253℃,因此必须改进目前的飞机燃料系统。德国戴姆勒一奔驰航空公司和俄罗斯航空公司已从1996年开始进行试验,证实在配备有双发动机的喷气机中使用液氢,其安全性有足够的保证。另外,由于同等重量的氢和汽油相比,氢提供的能量是汽油的3倍,但即使液态氢也需要4倍于汽油的容积,从而飞机设计师们面临的任务是将传统的机翼设计成可以容纳更多液氢的新型构造。
氢能的开发与应用研究在我国尚处于起步阶段,但随着技术进步,环境对清洁能源的要求不断提
高,氢能利用是发展的必然趋势,对氢源供应的要求必将日益增加。在发展过程中,应结合我国情况
积极开展扩大氢源、降低价格的研究,以便取得较好的经济效益和社会效益。
4、结束语
不久的将来,"氢经济社会"节省下石油、煤炭等化石燃料资源,基本废除内燃机动力系统,实现无污染排放,缓解温室效应,让环境更洁净、空气更清新。同时,氢能的使用也会带动可再生能源设备:电解水设备、燃料电池、储氢器等一系列新兴制造产业,全面推动经济发展。而核聚变电站、太阳能电站、风力电站及潮汐电站的发展又可以与氢能技术进一步结合,把人类利用能源的水平提高到新的水平。
总之,氢能的研究与开发有广宽的前景,随着氢能应用领域的逐步成熟与扩大,必然推动制氢方
法研究与开发。适合我国国情的廉价的氢源供应又将会进一步促进氢能的应用,为改善环境造福人
民作出贡献。

阅读全文

与有机液体氢能压缩吗相关的资料

热点内容
soho程序员 浏览:672
java字节截取 浏览:525
php提交作业 浏览:815
房产还没解压可以办理赠予吗 浏览:224
java毫秒转分钟 浏览:753
模式识别中文pdf 浏览:774
c语言平均数字编译错误 浏览:170
单片机算交流 浏览:45
php自适应网站 浏览:467
2b2t服务器怎么获得权限 浏览:816
c语言javaphp 浏览:804
程序员技术不分高低吗 浏览:619
dos不是内部或外部命令 浏览:709
PC机与单片机通讯 浏览:675
二级加密图 浏览:113
压缩机异音影响制冷吗 浏览:711
德斯兰压缩机 浏览:490
程序员太极拳视频 浏览:531
网上购买加密锁 浏览:825
安卓为什么软件要隐私 浏览:83