导航:首页 > 文件处理 > 回填土压缩模量

回填土压缩模量

发布时间:2022-08-14 18:46:10

A. 北京市地面沉降区含水岩组和压缩层划分

刘予叶超

(北京市地质环境监测总站,北京,100037)

【摘要】通过北京地面沉降区综合基础地质及地面沉降专项调查,查明了沉降区水文地质、工程地质条件及地面沉降分布现状,并在典型地面沉降区开展了钻探和各种水文地质、土工试验工作。根据上述成果资料,首次对北京市地面沉降区的含水岩组和压缩层组进行了划分,初步建立北京市地面沉降地质模型,为首都地面沉降网站建设及地面沉降预警预报系统建立奠定了基础。本文对此作一概括介绍。

【关键词】北京市地面沉降含水岩组压缩层组

1引言

1.1研究工作的目的和意义

地面沉降是指在自然和人为因素作用下,由于地壳表层土体压缩而导致区域性地面标高降低的一种环境地质现象。地面沉降给城市建筑物、道路交通、管道系统及给排水、防洪等带来了诸多困难。特别是一些建在第四纪松散堆积平原区的城市,受地面沉降灾害的影响尤为严重。

地面沉降是北京平原主要的地质灾害之一,其沉降的范围和幅度逐年扩大,目前发生地面沉降的面积已达到2815km2,累计最大沉降量约722mm。除东郊地区地面沉降仍在继续发展外,远郊昌平区海洛、顺义城南、大兴区榆垡又形成了3个新的地面沉降区。地面沉降已造成厂房、居民区楼房墙壁开裂、地基下沉、地下管道工程损坏50余处,同时导致一些建筑物的抗震能力降低和大量测量水准点失准,对首都城市建设和人民财产安全构成威胁。

本项工作的目的是初步建立北京市地面沉降地质模型,为下一步研究地面沉降机理、建设地面沉降监测网站、预测地面沉降发展趋势、建立地面沉降预警预报系统,提出地面沉降危害防治措施,为首都规划和城市建设提供基础资料。

1.2研究工作概况及存在问题

北京市地面沉降主要发生在北京北部、东部、南部平原地区,该区地质研究程度较高,完成了大量的区域地质工作,水文地质、工程地质工作,环境地质、灾害地质工作。

北京市地面沉降研究工作起步较晚,1984年北京市水文地质工程地质公司、北京市测绘院、北京市勘测处共同编制了《北京市地面沉降调研报告》;1985年北京市水文地质工程地质公司提交了《北京市地面沉降工程地质勘察设计》;1990年建成北京市第一个地面沉降监测站(八王坟地面沉降监测站),为研究北京市东郊地区地面沉降形成机理、发展趋势奠定了基础;同年提交了《北京市东郊地面沉降工程地质调查与八王坟监测站建站阶段报告》;1992年提交了《北京市东郊地面沉降与地下水开采量关系研究报告》。

综上所述,北京平原基础地质、水文地质、工程地质研究程度较高,但以往工作主要是为工农业供水及城市开发建设服务的,对地面沉降的研究程度较低,特别是尚未划分出北京市地面沉降区含水层组和压缩层组,地面沉降机理、发育规律等方面的研究相对薄弱。

1.3研究工作的技术路线和方法

本次研究采用的技术方法是选择地面沉降灾害发育较重、环境地质条件具有代表性的地区,通过地面调查与测量、遥感解译、物探等方法,查明北京平原区地面沉降历史、现状和发展趋势。在典型沉降区开展了专门水文地质、工程地质钻探,进行了大量的抽水试验、土工试验,查明地面沉降区的地层结构、以及含水层组和可压缩层组的埋藏分布特征,含水层组水文地质参数、可压缩层组物理力学性质、土力学参数及孔隙水压力等,为划分沉降区含水层组和压缩层组提供可靠依据。

2北京平原区地质环境背景

2.1气象水文

本市气候属于温带大陆性季风气候,年平均气温11.7℃,北京市多年平均降水量588.28mm,年降水量最大值1406mm(1959年),最小值256.2mm(1921年)。

北京地区水系属海河流域,河网发育,大小河流100余条,长2700km。这些河流分属五大水系,由西向东依次为大清河水系、永定河水系、北运河水系、潮白河水系、蓟运河水系,河流总体流向为自西北流向东南,最后汇入渤海。

2.2地形地貌

本市地形西北高,东南低,西部和北部是太行山脉和燕山山脉连绵不断的群山,一般海拔高度1000~1500m,山前冲洪积扇坡降1‰~5‰,平原大部分地区坡度小于0.5‰。地貌分为西部山区、北部山区和东南平原三大单元。

2.3 平原区地质概况

2.3.1 地层

北京平原区地层,除缺失奥陶系上统(O3)、志留系(S)、泥盆系(D)、石炭系下、中统(C1-2)、白垩系上统(K3)外,从元古界至第四系地层均有分布。地层由老到新分述如下:

(1)元古界(Pt)主要地层岩性为长城系、蓟县系、青白口系硅质白云岩、砂岩、页岩,局部有轻微变质。

(2)古生界(Pz)主要地层岩性为寒武系、奥陶系、石炭系和二迭系碳酸盐岩、碎屑岩及煤系地层。

(3)中生界(Mz)主要地层岩性为侏罗系、白垩系火山熔岩、火山碎屑岩及煤系地层。

(4)新生界第三系(Tr)的始新统(E2)主要岩性为暗紫色或猪肝色砂砾岩夹泥岩或砂质泥岩,呈半胶结状;渐新统(E3)主要岩性为灰色、灰褐色、灰绿色砂质泥岩,粉砂岩与含角砾凝灰岩夹黑色页岩,灰绿色硬砂岩;中—上新统(N1-2)主要岩性为棕黄色、棕红色泥质砂岩、砂质泥岩,棕褐色、灰色含砾硬砂岩、硬砂岩夹细砾岩。

(5)新生界第四系(Q)在北京平原区第四系厚度变化大,由山前到平原厚度由数十米到五六百米,与下伏第三系多呈平行不整合接触。

a.下更新统(Q1)为河湖相沉积物,岩性为粘性土夹砾石,或粘性土与砂层互层,厚度100~300m。

b.中更新统(Q2)一般埋藏于地表50~70m之下,西部地区较浅。其下部为黄棕、棕红色含砂性土,含砾粗砂及砾石层,局部地区为灰黑色粘性土含砂,底部为粘性土含砾、砂砾石和钙质结核混杂的堆积物,厚度70~110m。

c.上更新统(Q3)在山前台地及平原区广泛分布,山前台地岩性为黄土状粉质粘土及黄土状粉土,褐黄色、棕黄色。含钙质结核,虫孔、针孔、垂直节理发育,下部含砂砾石层,局部钙质胶结,致密坚硬;平原区地层以多层结构为主,岩性为砂砾石层或砂层与褐黄色、黄灰色粘性土互层。砾石粒径由西向东逐渐变小,厚度20~90m。

d.全新统(Q4)主要岩性一般为粘性土、细砂和砂砾石层,夹沼泽相泥炭层或有机质淤泥层,厚度一般5~10m,厚的可达20~25m。

2.3.2地质构造

北京平原区属于中朝准地台之华北断陷拗的西北隅,系中朝准台地新生代以来的下降区,周边常以断裂与邻区为界,近一步划分为北京迭断陷、大兴迭隆起、大厂新断陷3个Ⅲ级构造单元(见图1)。

图1北京市平原区基底构造与第四系厚度图

北京平原区主要构造形成于中生代(燕山运动),新生代以来受喜马拉雅造山运动的影响,得到进一步的改造。在中生代末期形成了许多雁行式排列的隆起带和凹陷带,发育一系列的北北东和北东向断裂,并有北西西向或北西向的张性及张扭性断裂与其垂直或斜交。平原区主要有六条活动断裂,分别为八宝山断裂、黄庄—高丽营断裂、良乡—前门断裂、南苑—通县断裂、马坊—夏店断裂、南口—孙河断裂。

2.4平原区第四系水文地质条件

2.4.1地下水系统及其特征

根据水系流域、地貌部位、地下水的含水介质结构、赋存条件和地下水水力特征和水力联系等,将北京平原区划分5个系统,各系统水文地质特征见表1。

2.4.2地下水补给、径流、排泄特征

第四系地下水的流动特征,是第四系地下水补给、径流、排泄条件的综合体现。第四系潜水、浅层承压水的补给来源主要为大气降水入渗,其次为山区侧向径流补给,地表水、渠道水的渗漏补给以及农田灌溉回归水的入渗补给。

表1第四系地下水系统特征一览表

潜水、浅层承压水的排泄,主要是人工开采,其次是地下水蒸发和侧向径流排泄。平原区地下水蒸发排泄,主要集中在潜水水位埋深小于4m的地区,上部潜水对下部浅层及中深层承压水的越流补给也是上部潜水排泄的一个途径。

平原区潜水、浅层承压水在天然条件下的径流方向与地形地貌变化相一致,即由山前向平原方向运动,受集中开采的影响潜水、浅层承压水也由降落漏斗四周向漏斗中心运动。

中深层和深层承压水,因目前还未开采,径流场变化不大,以水平径流为主。

2.4.3地下水动态

(1)地下水年动态特征

研究区潜水动态变化以气象—开采型为主,潜水年内动态变化主要受降水和人工开采的影响。在一个水文年内,潜水位季节变化较明显。在4~6月水位达到最低值。7~9月水位出现峰值,水位变幅可达5~10m。

承压水是平原区主要开采目的层之一,人工开采是影响承压水位动态变化的最主要因素。浅层承压地下水动态类型为径流—开采型,承压水季节性动态变化与潜水动态变化规律基本一致,在一个水文年内,也有一次上升期和一次下降期,只是承压水头随降水而出现峰值的时间有所滞后,承压水年最低水位一般出现在5~7月,年最高水位一般出现在10至翌年2月,年水位变幅为1~3m。

(2)地下水多年动态特征

图2表明:20世纪70年代以前,北京市地下水开采量小,采补基本平衡,地下水基本呈天然状态;70年代以后,由于城近郊地下水开采量大幅增加,城近郊地下水位下降很快;80年代,由于从1980年至1984年北京地区出现了连续5年的干旱少雨气候(5年平均降水量459.4mm),地下水补给量减少,开采量增加,地下水位快速下降,在城近郊集中开采区承压水水位下降较快;90年代,地下水开采量基本得到控制,1994~1998年连续出现4个偏丰年份,城区地下水位有所上升;从1998年底至2003年,由于5年连续干旱,地下水补给量减少,地下水水位与1998年年底水位相比,潜水和承压水水位最大下降幅度均在15~20m左右,年均下降为3~4m/a。

图2北京大学(承压水)和首都师范大学(潜水)观测孔地下水位动态曲线

2.5北京平原工程地质条件

北京平原位于华北平原的山前倾斜平原部位,北北东向活动断裂构造控制了新生代以来平原区的基本格局。平原区大部分为第四系松散的陆相沉积物,从下更新统(Q1)到全新统(Q4)地层均有分布;按其成因类型可分成冲积相、冲洪积相、河湖相和山麓坡洪积相地层;地层岩性有卵砾石、砂类土及粉土、粘性土等。

在山前沿山区边缘分布着大大小小的坡积群、洪积锥、黄土台地以及残山、残丘等,宽度1km至数千米不等。岩性以碎石、卵砾石和砂层透镜体的黄土类土为主,土体结构复杂。

平原区主要由五大河流冲洪积作用形成的扇前平原,相邻两扇交接部位地势略低,形成扇间洼地。该区是粘性土为主体的多层土体结构类型。

3北京地面沉降区含水岩组及压缩层划分

至1999年,北京市地面沉降量大于50mm的面积2815km2,大于100mm的面积为1826km2,分布在南北两区。北区主要分布于城区及北、东、南郊区,面积约1851km2,包括东八里庄—大郊亭沉降区(沉降中心累计沉降量为722mm)、来广营沉降区(沉降中心累计沉降量为565mm)、昌平沙河—八仙庄沉降区(沉降中心累计沉降量为688mm)及顺义平各庄沉降区(沉降中心累计沉降量为250mm);南区主要分布于大兴区南部的榆垡、礼贤一带,面积约964km2,为大兴榆垡—礼贤沉降区(沉降中心累计沉降量为661mm)。

北京地面沉降与第四系地层的成因类型、岩性、厚度、结构特点、物理力学性质等内在因素密切相关,地下水开采是形成地面沉降的主要外部原因,因此划分沉降区含水层组及压缩层组、分析地下水含水层和压缩层组的分布与埋藏条件、确定主要开采层和压缩层对地面沉降贡献的大小具有重要意义。

3.1沉降区含水岩组及压缩层划分的原则与依据

本次划分含水岩组及压缩层组的原则与依据如下:

(1)依据《北京地质志》、《北京市(1:5万)区域地质调查报告》、水文地质勘查资料,结合本次望京站、王四营站、天竺站第四系孢粉、古地磁资料;

(2)根据第四系成因类型、时代、岩性、埋藏条件;

(3)根据平原区第四系地下水补迳排条件、地下水流动特征及开采条件;

(4)根据可压缩层物理力学性质指标、固结程度、原位测试指标。

3.2含水岩组划分

根据上述原则将北京地面沉降区第四系含水层划分为3个含水岩组(见表2):

表2北京地面沉降区含水岩组划分简表

第一含水岩组(潜水、浅层承压含水层)为全新统(Q4)和上更新统(Q3)地层;

第二含水岩组(中深层承压含水层)为中更新统(Q2)地层;

第三含水岩组(深层承压含水层)为下更新统(Q1)地层。

各含水组埋藏条件及水文地质特征如下:

3.2.1第一含水岩组

广泛分布于北京平原区,在各河流冲洪积扇顶部地区为单一砂砾石结构的潜水含水层,底板埋深20m左右;浅层微承压水埋深20~40m,浅层承压水埋深40~80m,含水层组底板埋深小于100m,主要为全新统和上更新统冲洪积物。根据水文地质条件、地下水类型和开采状况等划分潜水含水层和浅层承压水含水层两个亚组:

(1)潜水含水层亚组

根据水文地质结构的差异可将该组分为冲洪积扇顶部潜水区和冲洪积扇中下部潜水区。

a.冲洪积扇顶部潜水区:含水层为上更新统(Q3)和全新统(Q4)冲洪积相为主的砂卵砾石,构成单一潜水含水层。含水层砂卵石厚度15~120m,砾卵石呈圆状,次圆状,砾径一般2~8cm,大者可达30cm。渗透系数为300~500m/d,含水层富水性好,单井出水量为5000m3/d。目前,大部分地区已成为严重超采区或超采区。

b.冲洪积扇中下部潜水区:含水层为上更新统(Q3)和全新统(Q4)沉积物,西部、北部含水层岩性以中粗砂、砾石为主,富水性较好。向东、南粒径逐渐变细,含水层主要为粉细砂层,局部河道地区有少量砂卵砾石层,富水性由西北向东南逐渐变差。

(2)浅层承压水亚组

含水层底界深度80~100m,主要为上更新统(Q3)沉积物,广泛分布于北京平原中下部地区。

永定河冲洪积扇中下部地区,含水层以多层中细砂、粉细砂层为主,局部见有1~3层砂砾石层,含水层累计厚度20~35m。根据分层抽水实验资料,该区浅层承压水含水层渗透系数一般在5~20m/d。单井出水量1500~3000m3/d,向下游方向减小至500~1500m3/d。

潮白河冲洪积扇中下部地区,含水层颗粒由北向南逐渐变细,层次增多。一般由两到三个较稳定的砂砾石层构成,含水层累计厚度20~30m。根据分层抽水试验资料,浅层微承压水渗透系数一般为3~5m/d,浅层承压水渗透系数一般在10~20m/d,单井出水量3000~5000m3/d。

温榆河冲洪积扇中下部含水层为2~3层砂砾石或砂层,含水层单层厚度5~10m。含水层累计厚度20~30m,单井出水量500~3000m3/d。

3.2.2第二含水岩组

广泛分布于北京平原冲洪积扇中下部地区。地下水类型为中深层承压水,含水岩组顶板埋深80~100m,底板埋深300m左右。本含水岩组为第四系中更新统(Q2)冲洪积物、冲湖积物,岩性以中粗砂为主,部分含砾。含水层为多层结构。按开采现状及其动态特征分为中深层承压水上段和下段,上段埋深100~200m,下段埋深200~300m:

(1)第二含水岩组上段

a.永定河冲洪积扇。该含水岩组底板埋深小于150m,含水层由多层砂砾石构成,累计厚度5~20m。根据分层抽水试验资料,含水层渗透系数一般在5~30m/d,单井出水量500~1500m3/d。

b.潮白河冲洪积扇。该含水组底界深度200m左右,含水层由多层砂砾石、砂层构成,累计厚度30~50m。根据分层抽水实验资料,上部含水层渗透系数20~25m/d,中部为10~15m/d,下部为1~5m/d,单井出水量500~3000m3/d。

(2)第二含水岩组下段

a.永定河冲洪积扇。目前永定河冲洪积扇第二含水岩组下段钻孔揭露资料较少。

b.潮白河冲洪积扇。该含水层底界深度小于300m。主要分布于北京平原东北、东南部的凹陷区内。含水层岩性以中粗砂、砾石为主,累计厚度30~50m。单井出水量500~1500m3/d。

3.2.3第三含水岩组

该岩组主要分布在北京平原东北、东南部的凹陷中心地区。地下水类型为深层孔隙承压水,含水组顶板埋深300m左右。含水层岩性为第四系下更新统(Q1)冲积物、冲湖积物,岩性以中粗砂、砾石为主,含水组为多层结构,顶部有厚度大于30m的粘性土隔水层,与上部中深层承压水含水层水力联系差。

3.3压缩层划分

依据划分原则可将北京地面沉降区可压缩层划分为3个压缩层:第一压缩层底板埋深小于100m,第二压缩层底板埋深小于300m,第三压缩层顶板埋深大于300m。

各压缩层的物理力学指标见表3。

表3北京地面沉降区压缩层物理力学指标综合表

3.3.1第一压缩层

第一压缩层广泛分布于北京平原区,底板埋深小于100m。地层岩性为第四系上更新统冲积相、冲湖积相粉土、粘性土层,厚度小于50m到大于80m不等(见图3)。根据其地层岩性结构和压缩性可分为上下两段:

(1)第一压缩层上段:

地表以下0~10m,城区为人工回填土层,大部分地区为褐黄色粉土、粉质粘土层,可塑—硬塑,湿—饱和,中等压缩性,Es值在8~15MPa之间。

地表以下10~15m,北京东部、东北部、北部地区为河湖淤积的粉质粘土、粘土,灰褐—灰色,含有机质,软塑—可塑、密实度较差,压缩性较高,Es值在4~8MPa之间,是该段主要的压缩层;南部地区为冲洪积粉质粘土、粉土层,褐黄色、湿—饱和,可塑—硬塑、中—中上密实,Es值在10~20MPa之间。

地表以下25~40m,北京东部、东北部、东南部地区为静水环境洪淤积的粘土、粉质粘土,灰色—灰褐色、可塑、压缩性中等,Es值在5~10MPa之间,含有机质、螺壳,工程地质性质较差,为相对软弱土层;南部地区为冲洪积的粉土、粉质粘土层,褐黄色,饱和,硬塑,低压缩性,Es值在15~25MPa之间。

(2)第一压缩层下段:

地表以下40~50m为稳定的粘土、粉土层,北京北部、东部、东北部、东南部等地区广泛分布。岩性为灰色,褐灰色粘土、重粉质粘土层,一般呈可塑—硬塑状态,中等密实,含水量较大,压缩性中等,Es值在12~22MPa之间;在北京南部地区岩性为粉土、粉质粘土层,褐黄色,饱和,硬塑,压缩性低,Es值在18~28MPa之间。

图3地下0~l00m压缩层等厚度分区图

地表以下50~100m为3~4层砂层夹2~3层粉质粘土、粘土层,在沉降区广泛分布。粉质粘土、粘土层多呈透镜体状,厚度20~40m不等。粉质粘土、粘土层为灰褐色一黄褐色,饱和,局部含有机质,可塑~硬塑,中低压缩性,Es值在20~26MPa之间。

3.3.2第二压缩层

广泛分布于北京冲洪积扇中下部地区,岩性为中更新统(Q2)冲洪积、冲湖积的粉土、粉质粘土、粘土层。在北京西南部,该组底板埋深一般小于150m;在北京东部、北部该组底板埋深可达280m左右(见图4)。压缩层占总厚度的比例一般为0.6~0.8。以埋深200m为界,可分为上下两段。

(1)第二压缩层上段

该段上部为10~30m左右的粉土、粉质粘土、粘土层,夹粉细砂薄层。在北京东部、东北部地区为冲洪积粉质粘土、粘土层,灰褐色—褐黄色,饱和,硬塑,结构致密,局部夹灰黑色粉土、粉砂层,含水量为25~34%,压缩模量Es值在21~33MPa之间;在北京南部地区为冲洪积褐黄色粉土、粉质粘土层,结构致密,硬塑—坚硬状态,压缩性低,含水量20~30%,压缩模量Es值在30~35MPa之间。

图4地下100~200m压缩层等厚度分区图

该段中下部为粉质粘土层。灰褐色、灰黄,饱和、硬塑、压缩性低,压缩模量Es值在35~50MPa之间。局部地区分布有大量淤泥及淤泥质粘土层,压缩性相对较高,压缩模量Es值在20~25MPa之间。

(2)第二压缩层下段

该段上部为厚15~25m左右的粉质粘土层,岩性为灰黑—灰褐色—灰黄色粉质粘土、粘土层,饱和、硬塑、结构致密、压缩性低,压缩模量Es值在50~70MPa之间。

该段中下部为灰褐—灰黑色粉质粘土层,夹灰褐色粉土、粉细砂薄层,一般呈硬塑—坚硬状态,结构密实,压缩性低,压缩模量Es值在50~70MPa之间。局部区域含淤泥质粘土及淤泥层,压缩性相对较高,压缩模量仅为27.7MPa。

3.3.3第三压缩层

主要分布在北京凹陷中心区范围内,为第四系下更新统(Q1)河湖相沉积的灰褐色、灰色粉质粘土、粘土层。结构致密,大部分呈坚硬状态,密实度高,压缩模量大部分大于70MPa。400m以下土层多呈固结状态,有胶结现象,压缩模量大部分大于100MPa,压缩性极低。压缩层中夹冲洪积、冰水沉积的黄色中粗砂、圆砾石层,密实度高。

4结论

(1)北京平原区地下水划分为永定河冲洪积扇系统,潮白河冲洪积扇系统,拒马河、大石河冲洪积扇系统,温榆河冲洪积扇地下水系统,蓟运河冲洪积扇系统等五个地下水系统。按含水介质成因类型、地层时代、岩性及埋藏条件等,将北京地面沉降区的含水层划分为3个含水岩组:

第一含水岩组含水组底板埋深小于100m,在冲洪积扇顶部或中上部以单一结构的砂卵砾石层为主,地下水类型主要为潜水。冲洪积扇中下部及冲湖积平原区为多层结构,地下水类型主要为潜水、浅层微承压水、浅层承压水;

第二含水岩组主要分布于冲洪积扇中下部及冲湖积平原区,为多层结构。地下水类型为中深层承压水。永定河冲洪积扇底板埋深大部分地区小于150m,潮白河冲洪积扇底板埋深达270~280m;

第三含水岩组主要分布在北京平原东北、东南部的凹陷中心区。地下水类型为深层承压水,顶板埋深270~280m。

(2)根据土体成因类型、地层时代、岩性、埋藏条件,物理力学性质、固结程度、原位测试指标,将北京地面沉降区划分为3个压缩层:

第一压缩层广泛分布于北京平原区,底板埋深一般小于100m。整体上由西向东、由北向南,压缩层由冲洪积相的粉土逐渐过渡为冲洪积、湖积相粉质粘土、粘土层,一般呈可塑—硬塑状态,为正常固结土。

第二压缩层广泛分布于北京冲洪积扇中下部地区。岩性为中更新统冲洪积、冲湖积的粉土、粉质粘土、粘土层。北京平原西南部该组底板埋深一般小于150m;平原东部、北部该组底板埋深可达280m左右。压缩层占总厚度的比例一般为0.6~0.8,粘性土呈可塑—硬塑状态,为超固结土。

第三压缩层主要分布在北京平原凹陷中心区范围内,顶板埋深大于270m。压缩层以粘土为主,呈坚硬状态,为超固结土。

本次对沉降区含水层组及压缩层组的划分,以及获取的各含水层组及压缩层组基本地质参数,为下一步地面沉降监测网站建设、地面沉降预警预报系统建立奠定了坚实基础。

参考文献

[1]天津市环境地质研究所,地矿部水文所.天津市地面沉降机理研究及预测预报综合治理科研报告.1995

[2]胡瑞林等.粘性土微结构定量模型及其工程地质特征研究.1995

[3]曹文炳.应用结合水渗流机制说明粘性土释水机制的初步探讨.全国第二届地面沉降学术讨论会论文,1980

[4]曹文炳,李克文.水位升降引起的粘性土层释水、吸水与越流发生过程的室内研究方法,勘察科学技术.1986,(4)

[5]冯晓腊,沈孝宇.饱和粘性土的固结特性及其微观机制的研究.水文地质工程地质.1991,(1)

[6]谢振华等.首都地区地下水资源和环境调查评价.北京市地质调查研究院,2003

[7]蔡启新等.北京统计年鉴(2003年).2003

[8]贾三满等.北京市地面沉降网站预警预报系统(一期)工程地面沉降调查报告.2004

[9]北京市地质勘察院.北京市东郊地面沉降与地下水开采量关系研究报告.1992

[10]北京市用水调研课题组.北京市用水调研与需水预测研究报告.2002

[11]王子国等.北京市区域地质志.1991

B. 素填土材料参数

素填土,松散~稍密,均匀性差,填龄长短不一,其工程特性差,天然重度取20.0KN/m3(经验值),饱和重度取20.5 kN/m3(经验值),若作一般回填土使用压实系数可取0.94;若要作基础持力层使用时,需进行人工处理,在施工时,填土经换填、分层夯实均匀(夯实系数≥0.96)、并应设砂砾石垫层,且承载力特征值采用静载荷试验、静力触探等原位试验进行复核后,可作单层或荷载要求小的拟建物基础持力层。

C. 回填土的工程量怎么计算

土(石)方回填按设计图示尺寸以体积计算。

(1)场地回填:回填面积乘以平均回填厚度。

(2)室内回填:主墙间净面积乘以回填厚度。

(3)基础回填:挖方体积减去设计室外地坪以下埋设的基础体积(包括基础垫层及其他构筑物)。

(4)管沟回填:挖土体积减去垫层和直径大于200的管沟体积。

不管是开挖还是回填都先看你的这个土方是什么类型的,根据不同类型的土方选用不同的方法来计算,如果是大面积场地的开挖回填肯定是要用方格网或三角网,如果是狭长的带状土方工程挖填肯定是断面法,你可以根据不同的类型来选择相应功能的土方软件。

(3)回填土压缩模量扩展阅读:

(1)沟槽、基坑回填土体积以挖方体积减去设计室外地坪以下埋设物(包括基础垫层、基础等)体积计算。

沟槽、基坑回填土工程量=挖土体积—室外地坪以下埋设的基础、垫层等所占的体积

(2)房心回填土,按主墙之间的面积乘以回填土厚度计算。房心回填土是指室外地坪以上至室内地面垫层之间的回填,也称室内回填土。

房心回填土工程量=主墙之间的净面积 * 回填土厚度

=(底层建筑面积—主墙所占面积)* 回填土厚度

=(S1-L中 * 外墙厚度-L内 * 内墙厚度) * 回填土厚度

式中 回填土厚度——设计室外地坪至室内地面垫层间的距离。

(3)管道的沟槽回填土体积按挖方体积减去管径所占体积计算。管径在500mm以下的不扣除管道所占体积;管径超过500mm以上时,按下表规定扣除管道所占体积。

回填方法

(1)人工填土方法

(2)机械填土方法一般有推土机填土;铲运机填土;汽车填土三种。

(3)压实方法一般有碾压法、夯实法和振动压实法以及利用运土工具压实。对于大面积填土工程,多采用碾压和利用运土工具压实。较小面积的填土工程,则宜用夯实工具进行压实。

施工方法

(1)毛石混凝土的厚度不宜小于400毫米。浇筑时,应先铺一层8~15厘米厚混凝土打底,再铺上毛石,毛石插入混凝土约一半后,再灌混凝土,填满所有空隙,再逐层铺砌毛石和浇筑混凝土,直至基础顶面,保持毛石顶部有不少于10厘米厚的混凝土覆盖层。所掺加毛石数量应控制不超过基础体积的25%。如果是在钢筋混凝土基础内放置毛石,可以先用绑丝将毛石吊在钢筋上再浇灌混凝土。

(2)毛石铺放应均匀排列,使大面向下,小面向上,毛石间距一般不小于10厘米,离开模板或槽壁距离不小于15厘米。

(3)对于阶梯形基础,每一阶高内应整分浇筑层,并有二排毛石,每阶表面要基本抹平;对于锥形基础,应注意保持斜面坡度的正确与平整,毛石不露于混凝土表面。

工艺:

1、工艺流程:

基坑(槽)底地坪上清理 → 检验土质 → 分层铺土、耙平 → 夯打密实 → 检验密实度 → 修整找平验收

2、填土前应将基坑(槽)底或地坪上的垃圾等杂物清理干净;肥槽回填前,必须清理到基础底面标高,将回落的松散垃圾、砂浆、石子等杂物清除干净。

3、检验回填土的质量有无杂物,粒径是否符合规定,以及回填土的含水量是否在控制的范围内;如含水量偏高,可采用翻松、晾晒或均匀掺入干土等措施;如遇回填上的含水量偏低,可采用预先洒水润湿等措施。

4、回填土应分层铺摊。每层铺土厚度应根据土质、密实度要求和机具性能确定。一般蛙式打夯机每层铺土厚度为200~250mrn;人工打夯不大于200mm。每层铺摊后,随之耙平。

5、回填上每层至少夯打三遍。打夯应一夯压半夯,穷夯相接,行行相连,纵横交叉。并且严禁采用水浇使土下沉的所谓“水夯”法。

6、深浅两基坑(槽)相连时,应先填夯深基础;填至浅基坑相同的标高时,再与浅基础一起填夯。如必须分段填夯时,交接处应填成阶梯形,梯形的高宽比一般为1∶2。上下层错缝距离不小于1.0m。

7、基坑(槽)回填应在相对两侧或四周同时进行。基础墙两侧标高不可相差太多,以免把墙挤歪;较长的管沟墙,应采用内部加支撑的措施,然后再在外侧回填土方。

8、回填房心及管沟时,为防止管道中心线位移或损坏管道,应用人工先在管子两侧填土夯实;并应由管道两侧同时进行,直至管项0.5m以上时,在不损坏管道的情况下,方可采用蛙式打夯机夯实。在抹带接口处,防腐绝缘层或电缆周围,应回填细粒料。

9、回填土每层填土夯实后,应按规范规定进行环刀取样,测出干土的质量密度;达到要求后,再进行上一层的铺土。

10、修整找平:填土全部完成后,应进行表面拉线找平,凡超过标准高程的地方,及时依线铲平;凡低于标准高程的地方,应补土夯实。

填土压法

(一)碾压法:碾压法是利用机械滚轮的压力压实土壤,使之达到所需的密实度。碾压机械有平碾及羊足碾等。

(二)夯实法:夯实法是利用夯锤自由下落的冲击力来夯实土壤,土体孔隙被压缩,土粒排列得更加紧密。人工夯实所用的工具有木夯、石夯等

(三)振动压实法:振动压实法是将振动压实机放在土层表面,在压实机振动作用下,土颗粒发生相对位移而达到紧密状态。振动碾是一种震动和碾压同时作用的高效能压实机械,比一般平碾提高功效1~2倍,可节省动力30%

D. 回填土的承载力达到要求,为什么不代表不沉降

因为对于地基土来说建筑物的荷载是后加上去的,地基土长期受该荷载作用逐渐驱于密实(相对于原图的密实度),任何物体受压力作用都会被压缩的,因此即使土的承载力达到要求建筑物还是会沉降。

E. 素填土的压缩模量是多少常规的数值是多少

压缩模量(Es):是指在侧限条件下受压时压应力δz与相应应变qz之比值;即
Es= δz/ qz 单位:Mpa
压缩模量与压缩系数之关系:Es越大,表明在同一压力范围内土的压缩变形越小,土的压缩性越低。
Es=1+e1/a
式中:e1 :相应于压力p1时土的孔隙比。
a :相应于压力从p1 增至p2时的压缩系数。

变形范围:
粗砂:33-46MPa,中砂:33-46,细砂:24-37,粉砂:10-14;粉土:11-23,黏土范围较大,详细取值可参考工程地质手册

F. 用片石和碎石屑(比例7:3)回填场地8~10m,分层30cm一层碾压,压实系数93%,那么该回填压缩模量大概多少

这个要看具体的施工工艺了,一般用片石和碎石屑回填达到10MPa,应该没什么压力。

G. 工程中回填土的压实度与沉降量什么关系

没有直接关系。
举例说明:如果假定回填土压实度为100%(用素混凝土回填),但沉降量还是存在。所以说压实度与沉降量没有直接关系。
沉降量与回填前的地基承载力,回填后的载重以及时间成正比,即与回填后的整体回弹模量和荷载成正比。

H. 回填土体积是指压缩土后土的体积还是自然土方的体积

回填土是经过压实以后的体积,以压实方计量。

I. 如何检测土壤和回填土承载力及劣实程度

地基承载力: 指地基土单位面积上所能随荷载的能力.地基承载力问题属于地基的强度和稳定问题. 地基承载力确定的途径 目前确定方法有: 1.根据原位试验确定:载荷试验,标准贯入,静力触探等.每种试验都有一定的适用条件. 2.根据地基承载力的理论公式确定. 3.根据《建筑地基基础设计规范》确定. 根据大量测试资料和建筑经验,通过统计分析,总结出各种类型的土在某种条件下的容许承载力,查表. 一般:一级建筑物:载荷试验,理论公式及原位测试确定f; 一级建筑物:规范查出,原位测试;尚应结合理论公式; 一级建筑物:邻近建筑经验. 确定地基承载力应考虑的因素 地基承载力不仅决定于地基的性质,还受到以下影响因素的制约. 1.基础形状的影响:在用极限荷载理论公式计算地基承载力时是按条形基础考虑的,对于非条形基础应考虑形状不同地基承载的影响. 2.荷载倾斜与偏心的影响:在用理论公式计算地基承载力时,均是按中心受荷考虑的,但荷载的倾斜荷偏心对地基承载力是有影响的. 3.覆盖层抗剪程度的影响:基底以上覆盖层抗剪强度越高,地基承载力显然越高,因而基坑开挖的大小和施工回填质量的好坏对地基承载力有影响. 4.地下水的影响:地下水水位上升会降低土的承载力. 5.下卧层的影响:确定地基持力层的承载力设计值,应对下卧层的影响作具体的分析和验算. 6.此外还有基底倾斜和地面倾斜的影响:地基土压缩性和试验底板与实际基础尺寸比例的影响.相邻基础的影响,加荷速率的影响和地基与上部结构共同作用的影响等. 在确定地基承载力时,应根据建筑物的重要性及结构特点,对上述影响因素作具体分析.

阅读全文

与回填土压缩模量相关的资料

热点内容
s7相片怎么加密 浏览:528
单片机串接cd4094 浏览:818
cad批量生成pdf 浏览:252
iosui编程 浏览:135
怎么看明日之后服务器的排名 浏览:265
padcal编译系统属于 浏览:629
乐什么是个APP借钱的 浏览:691
网络服务器如何接线 浏览:489
虚拟机文件夹没东西 浏览:902
狗狗用什么app好 浏览:268
java代码反编译后出现特殊字符 浏览:990
oracle编程300经典 浏览:703
女生app取什么名字好听 浏览:395
msp430单片机串口 浏览:37
儿童压缩面膜怎么用法 浏览:93
新车压缩机坏了保修吗 浏览:548
艾默生压缩机说明书 浏览:291
超解压手法 浏览:415
如何获取服务器上的文件地址 浏览:679
文件夹题用另存为吗 浏览:639