导航:首页 > 文件处理 > 压缩感知中的测量矩阵

压缩感知中的测量矩阵

发布时间:2022-09-27 23:53:14

压缩感知重构OMP算法代码

%A-稀疏系数矩阵
%D-字典/测量矩阵(已知)
%X-测量值矩阵(已知)
%K-稀疏度
function A=OMP(D,X,L)
[n,P]=size(X);
[n,K]=size(D);
for k=1:P
a=[];
x=X(:,k);
resial=x;%残差
indx=zeros(L,1);%索引集
for j=1:L
proj=D'*resial;%D转置与resial相乘,得到与resial与D每一列的内积值
pos=find(abs(proj)==max(abs(proj)));%找到内积最大值的位置
pos=pos(1);%若最大值不止一个,取第一个
indx(j)=pos;%将这个位置存入索引集的第j个值
a=pinv(D(:,indx(1:j)))*x;%indx(1:j)表示第一列前j个元素
resial=x-D(:,indx(1:j))*a;
end
temp=zeros(K,1);
temp(indx)=a;
A(:,k)=temp;%只显示非零值及其位置
end

❷ 奈奎斯特采样定理与压缩感知

姓名:苏彦恺

学号:14020150008

【嵌牛导读】:传统的奈奎斯特采样定律随着数字信号处理技术的发展,其缺陷以及应用上的不便日渐凸显,压缩感知技术应运而生。本文依据《数字信号处理》课程所学,对奈奎斯特采样定理进行了原理以及上的概述,同时在本文的后半部分,对压缩感知这一新式的信号处理技术进行了简单介绍。在本文的末尾,依据奈奎斯特采样定理与压缩感知原理上的异同进行了优缺点的分析,同时对压缩感知的发展进行了展望。

【嵌牛鼻子】:数字信号处理;奈奎斯特采样定理;压缩感知;稀疏矩阵

【嵌牛提问】:什么是压缩感知?与传统的奈奎斯特采样定理相比,压缩感知有什么样的特点和优势?

【嵌牛正文】:

奈奎斯特采样定理部分

一、概述

在数字信号处理领域中,采样定理是连续时间信号(通常称为“模拟信号”)和离散时间信号(通常称为“数字信号”)之间的基本桥梁。该定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。 它为采样率建立了一个足够的条件,该采样率允许离散采样序列从有限带宽的连续时间信号中捕获所有信息

二、基本原理 :

在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max>=2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。

要使实信号采样后能够不失真还原,采样频率必须大于信号最高频率的两倍。

当用采样频率F对一个信号进行采样时,信号中F/2以上的频率不是消失了,而是对称的映象到了F/2以下的频带中,并且和F/2以下的原有频率成分叠加起来,这个现象叫做“混叠”(aliasing).

消除混叠的方法有两种:

1.提高采样频率F,即缩小采样时间间隔.然而实际的信号处理系统不可能达到很大的采样频率,处理不了很多的数据.另外,许多信号本身可能含有全频带的频率成分,不可能将采样频率提高到无穷大.所以,通过采样频率避免混叠是有限制的.

2.采用抗混叠滤波器.在采用频率F一定的前提下,通过低通滤波器滤掉高于F/2的频率成分,通过低通滤波器的信号则可避免出现频率混叠.

公式:C = B * log2 N ( bps )

三、应用

采样定理通常针对单个变量的函数进行公式化。因此,定理可直接适用于时间相关的信号,并且通常在该上下文中公式化。然而,采样定理可以以直接的方式扩展到任意多个变量的函数。

灰度图像通常表示为代表位于行和列采样位置的交叉处的像素(图像元素)的相对强度的实数的二维阵列(或矩阵)。因此,图像需要两个独立变量或索引,以指定每个像素唯一一个用于行,一个用于列。

彩色图像通常由三个单独的灰度图像的组合构成,一个代表三原色(红色,绿色和蓝色)或简称RGB中的每一个。对于颜色使用3向量的其他颜色空间包括HSV,CIELAB,XYZ等。诸如青色,品红色,黄色和黑色(CMYK)的一些颜色空间可以通过四维表示颜色。所有这些都被处理为二维采样域上的向量值函数。

类似于一维离散时间信号,如果采样分辨率或像素密度不足,图像也可能遭受混叠。例如,具有高频率(换句话说,条纹之间的距离小)的条纹衬衫的数码照片可以在衬衫被照相机的图像传感器采样时导致衬衫的混淆。对于这种情况,在空间域中采样的“解决方案”将是更靠近衬衫,使用更高分辨率的传感器,或者在用传感器采集图像之前对图像进行光学处理

压缩感知部分

一、概述

压缩感知(Compressed sensing),也被称为压缩采样(Compressivesampling)或稀疏采样(Sparse sampling),是一种寻找欠定线性系统的稀疏解的技术。压缩感知被应用于电子工程尤其是信号处理中,用于获取和重构稀疏或可压缩的信号。这个方法利用讯号稀疏的特性,相较于奈奎斯特理论,得以从较少的测量值还原出原来整个欲得知的讯号。MRI就是一个可能使用此方法的应用。这一方法至少已经存在了四十年,由于David Donoho、Emmanuel Candès和陶哲轩的工作,最近这个领域有了长足的发展。近几年,为了因应即将来临的第五代移动通信系统,压缩感知技术也被大量应用在无线通讯系统之中,获得了大量的关注以及研究。

二、基本原理

为了更好的说明压缩感知的基本原理,在这里引入奈奎斯特采样进行比较说明。

如图2.1所示, 图b、d为三个余弦函数信号叠加构成的信号,在频谱图(图a)中只有个峰值。 如果对其进行8倍于全采样的等间距亚采样(图b下方的红点),则频域信号周期延拓后,就会发生混叠(图c),无法从结果中复原出原信号。

而如果采用随机亚采样(图2.2b上方的红点),那么这时候频域就不再是以固定周期进行延拓了,而是会产生大量不相关的干扰值。如图2.2c,最大的几个峰值还依稀可见,只是一定程度上被干扰值覆盖。这些干扰值看上去非常像随机噪声,但实际上是由于三个原始信号的非零值发生能量泄露导致的(不同颜色的干扰值表示它们分别是由于对应颜色的原始信号的非零值泄露导致的)。得到如图2.2d的频谱图后,再采用匹配追踪的算法,就可以对信号进行恢复。以上就是压缩感知理论的核心思想——以比奈奎斯特采样频率要求的采样密度更稀疏的密度对信号进行随机亚采样,由于频谱是均匀泄露的,而不是整体延拓的,因此可以通过特别的追踪方法将原信号恢复。

三、应用

1、全息成像

全息成像是一种记录被摄物体反射(或透射)光波中全部信息(振幅、相位)的照相技术,而物体反射或者投射的光线可以通过记录胶片完全重建,通过不同方位和角度观察照片,可以看到被拍摄的物体的不同的角度,因此记录得到的想可以使人产生立体视觉。然而全息图记录的立体信息非常庞大,在满足传统的香农采样定理进行采样时很难达到的带宽及存储和传输这些信息成为限制全息术发展的难题。

压缩感知技术为传统的信息采样传输带来了革命性的突破,为信号的计算和传输节省了很大资源。利用压缩感知可以去掉大量没有实际意义的信息采样,通过远低于传统采样样本点就可以重构出原始信号,解决了全息术在数据存储和传输方面的限制。

2、核磁共振成像

核磁共振成像作为一种极其重要的医学成像技术,具有对病灶诊断精确、对人体安全性高等优点,但是较长的数据采集时间成为其广泛应用的瓶颈。因此,在保证成像质量的前提下,探索一种新的快速成像方法迫在眉睫。压缩感知作为一种全新的信号采样理论,针对稀疏信号或可压缩信号,可以在采样数量远少于传统采样方式的情况下精确地恢复出原始信号,这就为核磁共振图像的快速获取提供了一种新的思路。

四、奈奎斯特和压缩感知的对比

从采样的角度来看,压缩感知和基于奈奎斯特采样定理的传统信号采集是两种不同形式的信号采集方式。(压缩感知打破了传统信号处理中对于奈奎斯特采样要求的限制)

1.采样率:在压缩感知理论下,信号的采样率不再取决于信号的带宽,而是取决于信息在信号中的结构与内容(稀疏性)。关于采样率的计算方式,压缩感知是从少量离散测量数据恢复离散数字信号,其计算方式为采样率=测量值的大小/恢复信号的大小;而传统信号采集是从离散采样数据中恢复模拟信号。

2.信号采集方式:传统采样理论是通过均匀采样获取数据;压缩感知则通过计算信号与一个观测函数之间的内积来获得观测数据。

3.恢复信号形式:传统采样定理关注的对象是无限长的连续信号;压缩感知是有限维观测向量空间的向量即离散信号。

4.恢复信号方式:传统采样恢复是在奈奎斯特采样定理的基础上,通过采样数据的sinc函数线性内插获得,而压缩感知采用的是利用信号的稀疏性,从线性观测数据中通过求解一个非线性的优化问题来恢复信号的方法。

5.压缩感知的核心思想:压缩和采样合并进行,并且测量值远小于传统采样方法的数据量,突破香农采样定理的瓶颈,使高分辨率的信号采集成为可能。

总结

奈奎斯特采样定理一直是信号处理领域的金科玉律,但其性能仍没法满足诸如全息成像、核磁共振等产生庞大数据的技术的信息恢复。然而在数字信号处理领域进入二十一世纪以后,压缩感知技术带来了颠覆性的改变,以比奈奎斯特采样频率要求的采样密度更稀疏的密度对信号进行随机亚采样,通过特别的追踪方法将原信号恢复,使得用于恢复信号的数据量远少于传统采样所需要的数据量。压缩感知理论的诞生已经对计算科学、信号处理、电子信息等领域产生重大的影响,其理论具有广阔的应用前景,但仍然不够完善,希望在今后的研究中能弥补压缩感知现有的不足,展现其强大的生命力,为更多难题提供新的解决方法。

❸ 压缩感知的历史背景

尽管压缩感知是由 E. J. Candes、J. Romberg、T. Tao 和D. L. Donoho 等科学家于2004 年提出的。但是早在上个世纪,相关领域已经有相当的理论和应用铺垫,包括图像处理、地球物理、医学成像、计算机科学、信号处理、应用数学等。
可能第一个与稀疏信号恢复有关的算法由法国数学家Prony 提出。这个被称为的Prony 方法的稀疏信号恢复方法可以通过解一个特征值问题,从一小部分等间隔采样的样本中估计一个稀疏三角多项式的非零幅度和对应的频率。而最早采用基于L1范数最小化的稀疏约束的人是B. Logan。他发现在数据足够稀疏的情况下,通过L1范数最小化可以从欠采样样本中有效的恢复频率稀疏信号。D. Donoho和B.Logan 是信号处理领域采用L1范数最小化稀疏约束的先驱。但是地球物理学家早在20 世纪七八十年代就开始利用L1范数最小化来分析地震反射信号了。上世纪90 年代,核磁共振谱处理方面提出采用稀疏重建方法从欠采样非等间隔样本中恢复稀疏Fourier 谱。同一时期,图像处理方面也开始引入稀疏信号处理方法进行图像处理。在统计学方面,使用L1范数的模型选择问题和相关的方法也在同期开始展开。
压缩感知理论在上述理论的基础上,创造性的将L1范数最小化稀疏约束与随机矩阵结合,得到一个稀疏信号重建性能的最佳结果。
压缩感知基于信号的可压缩性, 通过低维空间、低分辨率、欠Nyquist采样数据的非相关观测来实现高维信号的感知,丰富了关于信号恢复的优化策略,极大的促进了数学理论和工程应用的结合 。它是传统信息论的一个延伸,但是又超越了传统的压缩理论,成为了一门崭新的子分支。它从诞生之日起到现在不过五年时间,其影响却已经席卷了大半个应用科学。

❹ 什么是“压缩感知”

压缩感知, 也成为压缩采样。英文为Compressed Sampling 或者是 Compressive Sening。于2006年被提出,并被美国科技评论评为2007年度十大科技进展。
经典的采样定理为香农/乃奎斯特采样,即要保证信号的完全恢复,至少要有2倍的信号频率采样。但是这种采样当中,其实信息是冗余的。压缩感知告诉我们,如果知道信号是稀疏的,那么可以用远低于乃奎斯特采样率,一样可以很好的恢复信号。
压缩感知的核心:信号是稀疏的(即其中有K个为非零元素,其他的元素都为0),采样矩阵和稀疏基是不相关的。
相关内容较多,网络知道里面一下介绍不清楚。
如果有兴趣可以参考 http://dsp.rice.e/cs 。这里前17篇是压缩感知的综述,看完后就对概念、模型、求解算法、应用有个整体的了解。网页中间的那么多文献是针对压缩感知理论在各个领域的运用。在最后的部分,是网上现有的针对该问题的求解工具箱,大多数是基于Matlab的。只要分析后自己的模型,可以套用工具箱求解,非常方便。

❺ 什么是“压缩感知”

压缩感知,又称压缩采样,压缩传感。英文为Compressed Sampling、 Compressive Sening或者是Compressed sensing。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。

经典的采样定理为香农/乃奎斯特采样,即要保证信号的完全恢复,至少要有2倍的信号频率采样。但是这种采样当中,其实信息是冗余的。压缩感知告诉我们,如果知道信号是稀疏的,那么可以用远低于乃奎斯特采样率,一样可以很好的恢复信号。
压缩感知的核心:信号是稀疏的(即其中有K个为非零元素,其他的元素都为0),采样矩阵和稀疏基是不相关的。
相关内容较多,网络知道里面一下介绍不清楚。
视频资料:1.陆吾生教授于2010年在华东师范大学讲过"Compressed Sening and Signal Processing", 讲的是中文,易听懂,有点科普性质。2.Professor Justin Romberg 作为压缩感知理论的创始人之一,2013年在清华大学讲过“Comprssive Sening and Spare Recovery ”, 这个视频要深入些,全英文讲座,需要较好的英文和数学功底。

如果有兴趣深入学习,建议还是认认真真看文献。可以参考 http://dsp.rice.e/cs 。这里前17篇是压缩感知的综述,看完后就对概念、模型、求解算法、应用有个整体的了解。网页中间的那么多文献是针对压缩感知理论在各个领域的运用。在最后的部分,是网上现有的针对该问题的求解工具箱,大多数是基于Matlab的。只要分析后自己的模型,可以套用工具箱求解,非常方便。

❻ 压缩感知的展望

非线性测量的压缩感知。讲压缩感知解决的线性逆问题推广到非线性函数参数的求解问题。广义的讲,非线性测量的压缩感知,可以包括以前的测量矩阵不确定性问题,量化误差问题,广义线性模型问题,有损压缩样本问题。
压缩感知在矩阵分解中的推广应用。主成分分析,表示字典学习,非负矩阵分解,多维度向量估计,低秩或高秩矩阵恢复问题。
确定性测量矩阵的设计问题。 随机矩阵在实用上存在难点。随机矩阵满足的RIP是充分非必要条件。在实际中,稀疏表示矩阵和随机矩阵相乘的结果才是决定稀疏恢复性能字典。
传统压缩感知是以稀疏结构为先验信息来进行信号恢复。当前最新进展显示数据中存在的其他的简单代数结果也作为先验信息进行信号估计。联合开发这些信号先验信息,将进一步提高压缩感知的性能。

❼ 如何理解压缩感知

压缩感知的几个看似稀松平常,但是很关键的理论基础如下: 压缩感知最初提出时,是针对稀疏信号x,给出观测模型y=Φ*x时,要有怎么样的Φ,通过什么样的方式可以从y中恢复出x。(PS:稀疏信号,是指在这个信号x中非零元素的个数远小于其中零元素的个数。) 然而,很多信号本身并非稀疏的,比如图像信号。此时可以通过正交变换Ψ’,将信号投影到另外一个空间,而在这个空间中,信号a=Ψ'*x(analysis model)变得稀疏了。然后我们可以由模型y=Φ*a,即y=Φ*Ψ'*x,来恢复原始信号x。 后来,人们发现不仅仅能够通过正交变换,得到稀疏的信号;还可以通过一个字典D,得到稀疏信号x=D*a(synthesis model),a是稀疏的,为了增强变换后信号的稀疏性,通常D是过完备的。即模型y=Φ*x=Φ*D*a,此时记A^{CS}=Φ*D,即为感知矩阵。这个模型,是我们现在最常用的。

❽ 请问压缩感知理论中,“感知”究竟是对原信号还是对原信号的稀疏表达进行的(请看问题补充详细描述)

测量矩阵phy测量的对象是原始信号x,测出来是测量值y,例如,有160个点(x),经测量后测量值y的点数明显小于x的,这也是压缩感知的目的 1、Phy是测量矩阵,而x可以用一组基(Psy)表达 2、对信号进行观测 3、据我所知的几种算法恢复矩阵是根据测量矩阵和残差弄出来的

❾ 压缩感知中 稀疏基有很多种 怎么用matlab表示


  1. CS是个好东西,首先非零个数可以直接用find, length( find(a~=0) ) 就是a中非零元素的个数。

  2. 求解1范数有工具包的,l1-magic.

  3. 你要得到右图,第一步需要把小波基写成矩阵Phi,假设要分解的信号是y, 利用l1magic 求解 y=A*Phi*x , A是测量矩阵,如果你只是想用小波分解y,A取1就好了。 得到的x才是稀疏的,否则直接小波分解,得到的系数一般不稀疏

  4. 多看看压缩感知的基础,l1magic 也可以适当了解他的用法,对你肯定有帮助

❿ 压缩感知理论中,投影矩阵是指观测矩阵还是指稀疏化表示矩阵

应该是观测矩阵

阅读全文

与压缩感知中的测量矩阵相关的资料

热点内容
章小蕙《桃色》迅雷下载 浏览:953
海外华人影视 浏览:521
书包网下载全本txt免费下载 浏览:618
电影一个男孩和女主偷情 浏览:820
归来by勤劳的小野猫 浏览:154
法国马蹄铁电影在线 浏览:263
中国大陆老动作全部电影 浏览:876
十大封禁爱情电影观看 浏览:489
推荐血恋同级别的电影 浏览:117
男主意外和女主有孩子 浏览:616
先收女后收母的小说 浏览:998
无卡顿在线视频 浏览:128
在网址前面加什么不需要vip 浏览:516
我叫王刚电影的女孩是谁 浏览:66
韩国伦理女演员李彩 浏览:879
虎丘网格化管理app在哪里下载 浏览:191
一个男孩在庄园里的电影 浏览:462
程序员技术做到极限 浏览:864
主角可以回到抗战卖军火 浏览:956
会计云课堂文件夹是哪个 浏览:909