㈠ python如何进行内存管理
Python是如何进行内存管理的?
答:从三个方面来说,一对象的引用计数机制,二垃圾回收机制,三内存池机制。
一、对象的引用计数机制
Python内部使用引用计数,来保持追踪内存中的对象,所有对象都有引用计数。
引用计数增加的情况:
1,一个对象分配一个新名称
2,将其放入一个容器中(如列表、元组或字典)
引用计数减少的情况:
1,使用del语句对对象别名显示的销毁
2,引用超出作用域或被重新赋值
Sys.getrefcount( )函数可以获得对象的当前引用计数
多数情况下,引用计数比你猜测得要大得多。对于不可变数据(如数字和字符串),解释器会在程序的不同部分共享内存,以便节约内存。
相关推荐:《Python视频教程》
二、垃圾回收
1,当一个对象的引用计数归零时,它将被垃圾收集机制处理掉。
2,当两个对象a和b相互引用时,del语句可以减少a和b的引用计数,并销毁用于引用底层对象的名称。然而由于每个对象都包含一个对其他对象的应用,因此引用计数不会归零,对象也不会销毁。(从而导致内存泄露)。为解决这一问题,解释器会定期执行一个循环检测器,搜索不可访问对象的循环并删除它们。
三、内存池机制
Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。
1,Pymalloc机制。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
2,Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的malloc。
3,对于Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。
㈡ Python是如何进行内存管理的
Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。
Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的
malloc。另外Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的
整数,用于缓存这些整数的内存就不能再分配给浮点数。
在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一
级的内存池机制。这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响
Python的执行效率。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。这也就是之前提到的
㈢ python的内存管理机制
论坛
活动
招聘
专题
打开CSDN APP
Copyright © 1999-2020, CSDN.NET, All Rights Reserved
登录
XCCS_澍
关注
Python 的内存管理机制及调优手段? 原创
2018-08-05 06:50:53
XCCS_澍
码龄7年
关注
内存管理机制:引用计数、垃圾回收、内存池。
一、引用计数:
引用计数是一种非常高效的内存管理手段, 当一个 Python 对象被引用时其引用计数增加 1, 当其不再被一个变量引用时则计数减 1. 当引用计数等于 0 时对象被删除。
二、垃圾回收 :
1. 引用计数
引用计数也是一种垃圾收集机制,而且也是一种最直观,最简单的垃圾收集技术。当 Python 的某个对象的引用计数降为 0 时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了。比如某个新建对象,它被分配给某个引用,对象的引用计数变为 1。如果引用被删除,对象的引用计数为 0,那么该对象就可以被垃圾回收。不过如果出现循环引用的话,引用计数机制就不再起有效的作用了
2. 标记清除
如果两个对象的引用计数都为 1,但是仅仅存在他们之间的循环引用,那么这两个对象都是需要被回收的,也就是说,它们的引用计数虽然表现为非 0,但实际上有效的引用计数为 0。所以先将循环引用摘掉,就会得出这两个对象的有效计数。
3. 分代回收
从前面“标记-清除”这样的垃圾收集机制来看,这种垃圾收集机制所带来的额外操作实际上与系统中总的内存块的数量是相关的,当需要回收的内存块越多时,垃圾检测带来的额外操作就越多,而垃圾回收带来的额外操作就越少;反之,当需回收的内存块越少时,垃圾检测就将比垃圾回收带来更少的额外操作。
㈣ python怎么进行内存管理的
Python作为一种动态类型的语言,其对象和引用分离。这与曾经的面向过程语言有很大的区别。为了有效的释放内存,Python内置了垃圾回收的支持。Python采取了一种相对简单的垃圾回收机制,即引用计数,并因此需要解决孤立引用环的问题。Python与其它语言既有共通性,又有特别的地方。对该内存管理机制的理解,是提高Python性能的重要一步。
㈤ Python是怎样管理内存的
Python中的内存管理是由Python私有堆空间管理,所以Python对象和数据结构都位于私有堆中,程序员无法访问此私有堆,Python解释器负责处理这个问题。
Python对象的堆空间分配由Python的内存管理器完成,核心API提供了一些程序员编写代码的工具。
Python还有一个内存的垃圾收集器,可以回收所有未使用的内存,并使其可用于堆空间。
㈥ PYTHON 的变量作用域与内存分配
原理:python中任何变量都是对象,所以参数只支持引用传递方式。即通过名字绑定的机制,把实际参数的值和形式参数的名称绑定在一起,形式参数和实际参数指向内存中的同一个存储空间。
回答问题2:
每一次给变量赋值就是把这个名称的值在一个新内存中存储
你print
(id
(a))
会发现每一次f(x),a的内存地址都是新的。所以你的问题二中L=[4,3]
与之前的L[]不是同一个名称,所以append上a就是[4,3,3](简明点就是L=[4,3]与L=[1,2]是两不同名的玩意)
讨论问题1:
在你的程序中a=1,a=2,a=5是int对象的三个实例,所以占用的是三段不同的内存,自然在程序执行完收回内存的时候才会被清理;而L是通过列表的append方法进行变化时,print
(f(1))
print
(f(2))
print
(f(5))是对对一个实例进行操作的,所以内存地址不变;
同理print
(f(3,[4,3]))直接给L赋值时,由于
是一个新的列表实例了,内存位置自然变化。
产生以上的问题的根本原因就是python的精髓:万物皆对象
(赋值的过程是对象的实例化)
看完自己的回答后:感觉真的很绕,不过我是尽力了,希望你能看懂,不明白的话,在追问里注明吧!
㈦ python模块中类的内存如何分配
不好意思,是我没讲明白,python的模块定义了一个类,这个类包裹了一个库是用c写的,而且用了好多global的变量,使用这个库的流程是 "初始化 --> 使用 -->清理 “在c++的环境中如果初始化了两个类的实例,那么它们是相互影响的(由于全局变量的原因),当然如果开两个进程分别跑是没啥问题。在包成python的类之后呢,他们自建会相互影响吗?