导航:首页 > 编程语言 > python广度优先有向权值图

python广度优先有向权值图

发布时间:2025-06-11 23:40:30

python算法系列—深度优先遍历算法

一、什么是深度优先遍历
深度优先遍历算法是经典的图论算法。从某个节点v出发开始进行搜索。不断搜索直到该节点所有的边都被遍历完,当节点v所有的边都被遍历完以后,深度优先遍历算法则需要回溯到v以前驱节点来继续搜索这个节点。
注意:深度优先遍历问题一定要按照规则尝试所有的可能才行。

二、二叉树

2.二叉树类型
二叉树类型:空二叉树、满二叉树、完全二叉树、完美二叉树、平衡二叉树。

空二叉树:有零个节点
完美二叉树:每一层节点都是满的二叉树(如1中举例的图)
满二叉树:每一个节点都有零个或者两个子节点
完全二叉树:出最后一层外,每一层节点都是满的,并且最后一层节点全毁行历部从左排列
平衡二叉树:每个节点的两个子树的深度相差不超过1.

注:国内对完美二叉树和满二叉树定义相同
3.二叉树相关术语
术语 解释
度 节点的度为节点的子树个数
叶子节点 度为零的节点
分支节点 度不为零的节点
孩子节点 节点下的两个子节点
双亲节点 节点上一层的源节点
兄弟节点 拥有同一双亲节点的节点
根 二叉树的源头节点
深度 二叉树中节点的层的数量

DLR(先序):
LDR(中序):
LRD(后序):
注意:L代表左子树R代表右子树;D代表根

6.深度优先遍历和广度优先遍历
深度优先遍历:前序、中序和后序都是深度优先遍历
从根节点出发直奔最远节点,
广度优先遍历:首先访问举例根节点最近的节纤搜点,按层次递进,以广度优先遍历上图的顺序为:1-2-3-4-5-6-7
三、面试题+励志
企鹅运维面试题:带局
1.二叉树遍历顺序:看上文
2.用你熟悉的语言说说怎么创建二叉树? python看上文

❷ 一篇文章告诉你python爬虫原理,知其然更知其所以然,从此爬虫无忧

Python,一种面向对象、直译式电脑编程语言,功能强大且通用性强,已有近二十年的发展历史,其标准库完善且易懂,能轻松完成多种任务。Python支持多种编程范式,如命令式、面向对象、函数式、面向切面、泛型编程,并具有垃圾回收功能,自动管理存储器使用。它常用于处理系统管理和网络编程,也可执行复杂任务。Python虚拟机几乎能在所有作业系统中运行,通过工具如py2exe、PyPy、PyInstaller可将Python源代码转换为可独立运行的程序。

爬虫教程通常会从页面提取数据、介绍HTTP协议、讲解模拟登录和反爬虫策略,最后提供简单Scrapy教程。这些教程往往忽略了爬虫的核心逻辑抽象,即如何遍历网页。实际上,只需要使用两个队列和一个集合,即可实现基础通用爬虫。

互联网由页面构成,页面间由链接连接,形成有向图结构。可以使用广度优先或深度优先算法遍历此图。虽然图巨大,但我们仅关注感兴趣的节点,如某个域名下的网页。广度优先和深度优先可用递归或队列实现。但使用Python写爬虫时,不能使用递归,因为调用栈深度限制,可能导致异常。因此,推荐使用队列实现网页遍历。

理论知识后,以爬取煎蛋网的妹子图为例,说明如何获取上下页链接。需避免重复访问已访问页面,使用集合存储已访问页面。从页面中抽取所需数据,如图片,可以使用xpath表达式。将运行请求和运行项目放入不同线程,实现同时遍历网页和下载图片。

最终实现煎蛋妹子图爬虫,所有爬虫框架本质上相似,Scrapy采用类似方式,但使用Lifo Queue实现深度优先遍历。通过配置文件,可实现爬取目标数据,简化代码修改。遇到封锁时,可采用灵活策略应对,如使用pipeline。

Python适用于多个领域,如web开发、自动化运维、大数据分析、科学计算、机器学习和人工智能。从零基础到专业领域,Python均具有广泛应用。通过不同需求和专业背景,掌握Python可实现多种功能。

❸ 常见算法5、广度优先搜索 Breadth-First Search

1、定义

广度优先搜索 (Breadth-First Search)是最简便的图的搜索算法之一,又称 宽度优先搜索 ,这一算法也是很多重要的图算法的原型。广度优先搜索属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。

2、应用

广度优先搜索被用于解决 最短路径问题(shortest-path problem)

广度优先搜索让你能够找出两样东西之间的最短距离,不过最短距离的含义有很多!使用广度优先搜索可以:

3、图简介

既然广度优先搜索是作用于图的一种算法,这里对图作一个简单的介绍,先不深入了解。

图由 节点 组成。一个节点可能与多个节点相连,这些节点被称为邻居。

广度优先算法的核心思想是:从初始节点开始,应用算符生成第一层节点,检查目标节点是否在这些后继节点中,若没有,再用产生式规则将所有第一层的节点逐一扩展,得到第二层节点,并逐一检查第二层节点中是否包含目标节点。若没有,再用算符逐一扩展第二层的所有节点……,如此依次扩展,检查下去,直到发现目标节点为止。即

广度优先搜索使用队列(queue)来实现,整个过程也可以看做一个倒立的树形。

例:假如你需要在你的人际关系网中寻找是否有职业为医生的人,图如下:

而使用广度优先搜索工作原理大概如下 :

1、Python 3 :

2、php

1、《算法图解》 https://www.manning.com/books/grokking-algorithms
2、SplQueue类: https://www.php.net/manual/zh/class.splqueue.php

❹ 有向图和无向图的有关知识

有/无 向图如果给图的每条边规定一个方向,那么得到的图称为有向图,其边也称为有向边。在有向图中,与一个节点相关联的边有出边和入边之分,而与一个有向边关联的两个点也有始点和终点之分。相反,边没有方向的图称为无向图。[编辑]简单图一个图如果没有两条边,它们所关联的两个点都相同(在有向图中,没有两条边的起点终点都分别相同);每条边所关联的是两个不同的顶点则称为简单图(simple graph)。简单的有向图和无向图都可以使用以上的“二元组的定义”,但形如(x,x)的序对不能属于E。而无向图的边集必须是对称的,即如果 ,那么 。[编辑]多重图若允许两结点间的边数多于一条,又允许顶点通过同一条边和自己关联,则为多重图的概念。它只能用“三元组的定义”。[编辑]基本术语在顶点1有一个环阶(Order):图G中顶集V的大小称作图G的阶。子图(Sub-Graph):图G'称作图G的子图如果以及 。生成子图(Spanning Sub-Graph):指满足条件V(G') =V(G)的G的子图G。度(Degree)是一个顶点的度是指与该顶点相关联的总边数,顶点v的度记作d(v)。度和边有如下关系:。出度(out-degree) 和入度 (in-degree):对有向图而言,顶点的度还可分为出度和入度。一个顶点的出度为 do ,是指有 do 条边以该顶点为起点,或说与该点关联的出边共有do条。入度的概念也类似。邻接矩阵环(loop):若一条边的两个顶点相同,则此边称作环。路径(path):从顶点 u 到顶点 v 的一条路径是指一个序列v0,e1,v1,e2,v2,...ek,vk, ei的起点终点为vi及vi - 1; k 称作路径的长度; v_0=u,称为路径的起点; v_k=v,称为路径的终点。如果 u=v,称该路径是闭的,反之则称为开的;如果 v_1 , ... , v_k 两两不等,则称之为简单路径(simple path)(注意,u=v 是允许的)。行迹(trace):如果路径P(u,v)中边各不相同,则该路径称为u到v的一条行迹。轨道(track):即简单路径。闭的行迹称作回路(circuit),闭的轨道称作圈(Cycle)。(现存文献中的命名法并无统一标准。比如在另一种定义中,walk 对应上述的 path,path 对应上述的 track , trail 对应上述的 trace。)距离(distance): 从顶点 u 出发到顶点 v 的最短路径若存在,则此路径的长度称作从 u 到 v 的距离。若从 u 到 v 根本不存在路径,则记该距离为无穷(∞)。距离矩阵桥(bridge):若去掉一条边,便会使得整个图不连通,该边称为桥。[编辑]图的存储表示数组(邻接矩阵)存储表示(有向或无向)邻接表存储表示前向星存储表示有向图的十字链表存储表示无向图的邻接多重表存储表示一个不带权图中若两点不相邻,邻接矩阵相应位置为0,对带权图(网),相应位置为∞。一个图的邻接矩阵表示是唯一的,但其邻接表表示不唯一。在邻接表中,对图中每个顶点建立一个单链表(并按建立的次序编号),第i个单链表中的结点表示依附于顶点vi的边(对于有向图是以顶点vi为尾的弧)。每个结点由两个域组成:邻接点域(adjvex),用以指示与vi邻接的点在图中的位置,链域(nextarc)用以指向依附于顶点vi的下一条边所对应的结点。如果用邻接表存放网(带权图)的信息,则还需要在结点中增加一个存放权值的域(info)。每个顶点的单链表中结点的个数即为该顶点的出度(与该顶点连接的边的总数)。无论是存储图或网,都需要在每个单链表前设一表头结点,这些表头结点的第一个域data用于存放结点vi的编号i,第二个域firstarc用于指向链表中第一个结点。[编辑]图的遍历图的遍历方法有深度优先搜索法和广度(宽度)优先搜索法。深度优先搜索法是树的先根遍历的推广,它的基本思想是:从图G的某个顶点v0出发,访问v0,然后选择一个与v0相邻且没被访问过的顶点vi访问,再从vi出发选择一个与vi相邻且未被访问的顶点vj进行访问,依次继续。如果当前被访问过的顶点的所有邻接顶点都已被访问,则退回到已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点w,从w出发按同样的方法向前遍历,直到图中所有顶点都被访问。其递归算法如下:Boolean visited[MAX_VERTEX_NUM]; //访问标志数组Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数void DFSTraverse (Graph G, Status(*Visit)(int v)){ VisitFunc = Visit; for(v=0; v<G.vexnum; ++v) visited[v] = FALSE; //访问标志数组初始化 for(v=0; v<G.vexnum; ++v) if(!visited[v]) DFS(G, v); //对尚未访问的顶点调用DFS}void DFS(Graph G, int v){ //从第v个顶点出发递归地深度优先遍历图Gvisited[v]=TRUE; VisitFunc(v); //访问第v个顶点for(w=FirstAdjVex(G,v); w>=0; w=NextAdjVex(G,v,w))//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0),//若w是v的邻接顶点,NextAdjVex返回v的(相对于w的)下一个邻接顶点。//若w是v的最后一个邻接点,则返回空(0)。 if(!visited[w]) DFS(G, w); //对v的尚未访问的邻接顶点w调用DFS}图的广度优先搜索是树的按层次遍历的推广,它的基本思想是:首先访问初始点vi,并将其标记为已访问过,接着访问vi的所有未被访问过的邻接点vi1,vi2, …, vi t,并均标记已访问过,然后再按照vi1,vi2, …, vi t的次序,访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依次类推,直到图中所有和初始点vi有路径相通的顶点都被访问过为止。其非递归算法如下:Boolean visited[MAX_VERTEX_NUM]; //访问标志数组Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数void BFSTraverse (Graph G, Status(*Visit)(int v)){ VisitFunc = Visit;for(v=0; v<G.vexnum, ++v) visited[v] = FALSE; initQueue(Q); //置空辅助队列Q for(v=0; v<G.vexnum; ++v) if(!visited[v]){ visited[v]=TRUE; VisitFunc(v); EnQueue(Q, v); //v入队列 while(!QueueEmpty(Q)){ DeQueue(Q, u); //队头元素出队并置为u for(w=FirstAdjVex(G,u); w>=0; w=NextAdjVex(G,u,w)) if(!Visited[w]){ //w为u的尚未访问的邻接顶点 Visited[w]=TRUE; VisitFunc(w); EnQueue(Q, w); } } }}
[编辑]图的重要类型树平面图连通图强连通图有向无环图AOV网AOE网完全图:每一对不同顶点间都有边相连的的图,记作Kn。二分图:顶集,且每一条边都有一个顶点在X中,而另一个顶点在Y中。完全二分图:二分图G中若任意两个X和Y中的顶点都有边相连。若,则图G记作Km,n。正则图:如果图中所有顶点的度皆相等,则此图称为正则图欧拉图:存在经过所有边一次(可以多次经过点)的路径的图哈密顿图:存在经过所有点一次的路径的图

❺ 找最短路径的方法

1),深度或广度优先搜索算法(解决单源最短路径)
从起始结点开始访问所有的深度遍历路径或广度优先路径,则到达终点结点的路径有多条,取其中路径权值最短的一条则为最短路径。
给定一个带权有向图G=(V,E),其中每条边的权是一个实数。另外,还给定V中的一个顶点,称为
源。
现在要计算从源到其他所有各顶点的最短路径长度。这里的长度就是指路上各边权之和。这个问题通
常称为单源最短路径 问题。
从起始结点开始访问所有的深度遍历路径或广度优先路径,则到达终点结点的路径有多条,取其中路
径权值最短的一条则为最短路径

❻ python 算法种类

python虽然具备很多高级模块,也是自带电池的编程语言,但是要想做一个合格的程序员,基本的算法还是需要掌握,本文主要介绍列表的一些排序算法
递归是算法中一个比较核心的概念,有三个特点,1 调用自身 2 具有结束条件 3 代码规模逐渐减少

阅读全文

与python广度优先有向权值图相关的资料

热点内容
八卦汇总421页pdf 浏览:286
android应用自动升级 浏览:747
远程屏幕监控源码 浏览:569
云服务器的ip怎么查询 浏览:155
大学c语言搜题app在哪里下载 浏览:109
pdf文档被保护 浏览:345
有没有电脑公司网站源码下载 浏览:230
智能电视哪个app看电影好用 浏览:224
微信页面源码下载 浏览:957
怎么看5代喷头加密 浏览:359
linux查找文件并删除文件 浏览:872
单片机里的编程软件 浏览:164
钻石投票网站源码 浏览:973
cidrphp 浏览:882
android测试用例文档 浏览:820
单片机素数 浏览:838
怎么在桌面上发送文件夹 浏览:759
海外贷款源码 浏览:717
北航单片机实验 浏览:799
私有云服务器在哪里 浏览:939