导航:首页 > 编程语言 > python爬虫网址要求

python爬虫网址要求

发布时间:2025-07-03 19:26:05

1. python网络爬虫-APP端爬虫

一、环境安装

1.1 模拟器安装
借助模拟器进行APP端调试,通过下载安装可实现。推荐使用夜神模拟器(yeshen.com/)或网易MuMu模拟器(mumu.163.com/)。

1.2 SDK安装
提供多种下载渠道,首选官网下载(developer.android.com/s...)或第三方下载平台(androiddevtools.cn/)。使用SDK Manager.exe安装工具,选择需要的工具,如Build-tools和特定Android版本,同时勾选Extras中的选项,最后点击【Install】安装。注意,安装过程可能持续数小时。配置环境变量,设置ANDROID_HOME为sdk安装目录,并将平台工具和工具路径添加到Path环境变量中。

1.3 Fiddler安装
直接从官网下载安装(telerik.com/download/fi...)以获取http协议调试代理工具Fiddler,用于记录和检查所有电脑与互联网之间的http通信。

1.4 Appium安装
通过官网下载(appium.io/)安装appium,一个跨平台的自动化测试工具,支持iOS、Android应用及web应用测试。

1.5 mitmproxy库安装
安装mitmproxy库时,通过pip方式可能遇到错误,建议下载whl文件安装(pypi.org/project/mitmpr...)。确保设置好证书,以便在监听HTTPS请求时工作。

二、抓包工具的使用

2.1 Fiddler配置
确保Fiddler的Capture Traffic功能开启,然后用浏览器访问网页,Fiddler中会显示抓取的数据包。对于HTTPS配置,通过Tools->Options进行设置,并确保Allow remote computers connect选项开启。

2.2 模拟器配置
在模拟器设置中,手动更改代理设置,输入本机IP和Fiddler端口,完成与Fiddler的代理连接。

三、移动端自动化控制

3.1 APK包名获取
通过adb命令获取apk包名,确保adb服务启动并连接模拟器,然后在模拟器中获取所需app的包名和Activity。

3.2 Appium使用
使用appium的python包,启动appium服务,编写示例代码操作模拟器,并使用uiautomatorviewer获取元素的Xpath路径。

四、利用mitmproxy抓取存储数据

4.1 基本原理
mitmproxy提供命令行接口mitmmp,用于处理抓取的数据,并将其存储到数据库中,同时支持Python脚本处理请求和响应。

4.2 抓取步骤
使用fiddler分析请求,然后通过mitmmp拦截并保存数据至MySQL数据库。

五、APK脱壳反编译

5.1 脱壳
使用Xposed框架安装FDex2工具,通过Hook ClassLoader方法脱壳APK。推荐从网络下载并安装FDex2工具。

5.2 APK反编译
使用apktool反编译apk文件以获取静态资源,而dex2jar则将.dex文件转换为Java源代码。此过程需谨慎处理多个.dex文件。

5.3 JAD-反编译class文件
借助GitHub上的JAD工具将.class文件反编译为Java源代码,便于阅读和理解。

2. 如何使用python爬虫jfinal

一、gzip/deflate支持

现在的网页普遍支持gzip压缩,这往往可以解决大量传输时间,以VeryCD的主页为例,未压缩版本247K,压缩了以后45K,为原来的1/5。这就意味着抓取速度会快5倍。

然而python的urllib/urllib2默认都不支持压缩,要返回压缩格式,必须在request的header里面写明’accept-
encoding’,然后读取response后更要检查header查看是否有’content-encoding’一项来判断是否需要解码,很繁琐琐
碎。如何让urllib2自动支持gzip, defalte呢?

其实可以继承BaseHanlder类,然后build_opener的方式来处理:

import urllib2
from gzip import GzipFile
from StringIO import StringIO
class ContentEncodingProcessor(urllib2.BaseHandler):
"""A handler to add gzip capabilities to urllib2 requests """

# add headers to requests
def http_request(self, req):
req.add_header("Accept-Encoding", "gzip, deflate")
return req

# decode
def http_response(self, req, resp):
old_resp = resp
# gzip
if resp.headers.get("content-encoding") == "gzip":
gz = GzipFile(
fileobj=StringIO(resp.read()),
mode="r"
)
resp = urllib2.addinfourl(gz, old_resp.headers, old_resp.url, old_resp.code)
resp.msg = old_resp.msg
# deflate
if resp.headers.get("content-encoding") == "deflate":
gz = StringIO( deflate(resp.read()) )
resp = urllib2.addinfourl(gz, old_resp.headers, old_resp.url, old_resp.code) # 'class to add info() and
resp.msg = old_resp.msg
return resp

# deflate support
import zlib
def deflate(data): # zlib only provides the zlib compress format,not the deflate format;
try: # so on top of all there's this workaround:
return zlib.decompress(data, -zlib.MAX_WBITS)
except zlib.error:
return zlib.decompress(data)

然后就简单了,

encoding_support = ContentEncodingProcessor
opener = urllib2.build_opener( encoding_support, urllib2.HTTPHandler )

#直接用opener打开网页,如果服务器支持gzip/defalte则自动解压
content = opener.open(url).read()

二、更方便地多线程

总结一文的确提及了一个简单的多线程模板,但是那个东东真正应用到程序里面去只会让程序变得支离破碎,不堪入目。在怎么更方便地进行多线程方面我也动了一番脑筋。先想想怎么进行多线程调用最方便呢?

1、用twisted进行异步I/O抓取

事实上更高效的抓取并非一定要用多线程,也可以使用异步I/O法:直接用twisted的getPage方法,然后分别加上异步I/O结束时的callback和errback方法即可。例如可以这么干:

from twisted.web.client import getPage
from twisted.internet import reactor

links = [ 'http://www.verycd.com/topics/%d/'%i for i in range(5420,5430) ]

def parse_page(data,url):
print len(data),url

def fetch_error(error,url):
print error.getErrorMessage(),url

# 批量抓取链接
for url in links:
getPage(url,timeout=5)
.addCallback(parse_page,url) #成功则调用parse_page方法
.addErrback(fetch_error,url) #失败则调用fetch_error方法

reactor.callLater(5, reactor.stop) #5秒钟后通知reactor结束程序
reactor.run()

twisted人如其名,写的代码实在是太扭曲了,非正常人所能接受,虽然这个简单的例子看上去还好;每次写twisted的程序整个人都扭曲了,累得不得了,文档等于没有,必须得看源码才知道怎么整,唉不提了。

如果要支持gzip/deflate,甚至做一些登陆的扩展,就得为twisted写个新的HTTPClientFactory类诸如此类,我这眉头真是大皱,遂放弃。有毅力者请自行尝试。

这篇讲怎么用twisted来进行批量网址处理的文章不错,由浅入深,深入浅出,可以一看。

2、设计一个简单的多线程抓取类

还是觉得在urllib之类python“本土”的东东里面折腾起来更舒服。试想一下,如果有个Fetcher类,你可以这么调用

f = Fetcher(threads=10) #设定下载线程数为10
for url in urls:
f.push(url) #把所有url推入下载队列
while f.taskleft(): #若还有未完成下载的线程
content = f.pop() #从下载完成队列中取出结果
do_with(content) # 处理content内容

这么个多线程调用简单明了,那么就这么设计吧,首先要有两个队列,用Queue搞定,多线程的基本架构也和“技巧总结”一文类似,push方法和
pop方法都比较好处理,都是直接用Queue的方法,taskleft则是如果有“正在运行的任务”或者”队列中的任务”则为是,也好办,于是代码如
下:

import urllib2
from threading import Thread,Lock
from Queue import Queue
import time

class Fetcher:
def __init__(self,threads):
self.opener = urllib2.build_opener(urllib2.HTTPHandler)
self.lock = Lock() #线程锁
self.q_req = Queue() #任务队列
self.q_ans = Queue() #完成队列
self.threads = threads
for i in range(threads):
t = Thread(target=self.threadget)
t.setDaemon(True)
t.start()
self.running = 0

def __del__(self): #解构时需等待两个队列完成
time.sleep(0.5)
self.q_req.join()
self.q_ans.join()

def taskleft(self):
return self.q_req.qsize()+self.q_ans.qsize()+self.running

def push(self,req):
self.q_req.put(req)

def pop(self):
return self.q_ans.get()

def threadget(self):
while True:
req = self.q_req.get()
with self.lock: #要保证该操作的原子性,进入critical area
self.running += 1
try:
ans = self.opener.open(req).read()
except Exception, what:
ans = ''
print what
self.q_ans.put((req,ans))
with self.lock:
self.running -= 1
self.q_req.task_done()
time.sleep(0.1) # don't spam

if __name__ == "__main__":
links = [ 'http://www.verycd.com/topics/%d/'%i for i in range(5420,5430) ]
f = Fetcher(threads=10)
for url in links:
f.push(url)
while f.taskleft():
url,content = f.pop()
print url,len(content)


阅读全文

与python爬虫网址要求相关的资料

热点内容
数据和算法的区别 浏览:459
单片机实现无线通信 浏览:556
往复压缩机气阀工作原理 浏览:264
怎么把安卓微信记录转移到ios 浏览:790
程序员编程用电脑 浏览:545
ios点开文件夹背景不透明了 浏览:667
python中如何创建一个文件夹 浏览:317
android打开scheme 浏览:333
单片机如何撤销中断请求指标 浏览:666
滴滴加油怎么在ApP打发票 浏览:21
数据库文件夹权限设置 浏览:780
保定哪里能办理车辆解压 浏览:356
怎么打开解压图片文件 浏览:140
语声直播源码大全 浏览:226
程序员第一次做蛋炒饭 浏览:635
服务器云路由 浏览:148
开发什么app最好 浏览:483
linux调用c静态库 浏览:719
公司核心程序员离职 浏览:194
webspherelinux下载 浏览:73