㈠ 有一张人脸的侧脸图像,如何用python及相关的库来计算人脸转过的角度。
这个很难办到,不过可以通过判断关键点的特点进行判断,但是准确率不高
前言
很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。
一点区分
对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。今天我们要做的是人脸识别。
所用工具
Anaconda 2——Python 2
Dlib
scikit-image
Dlib
对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:
pip install dlib
上面需要用到的scikit-image同样只是需要这么一句:
pip install scikit-image
注:如果用pip install dlib安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。
人脸识别
之所以用Dlib来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。今天的例子既然代码不超过40行,其实是没啥难度的。有难度的东西都在源码和论文里。
首先先通过文件树看一下今天需要用到的东西:
准备了六个候选人的图片放在candidate-faces文件夹中,然后需要识别的人脸图片test.jpg。我们的工作就是要检测到test.jpg中的人脸,然后判断她到底是候选人中的谁。另外的girl-face-rec.py是我们的python脚本。shape_predictor_68_face_landmarks.dat是已经训练好的人脸关键点检测器。dlib_face_recognition_resnet_model_v1.dat是训练好的ResNet人脸识别模型。ResNet是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 2015 冠军,通过让网络对残差进行学习,在深度和精度上做到了比
CNN 更加强大。
1. 前期准备
shape_predictor_68_face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat都可以在这里找到。
然后准备几个人的人脸图片作为候选人脸,最好是正脸。放到candidate-faces文件夹中。
本文这里准备的是六张图片,如下:
她们分别是
然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:
可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张图片微微侧脸,而且右侧有阴影。
2.识别流程
数据准备完毕,接下来就是代码了。识别的大致流程是这样的:
3.代码
代码不做过多解释,因为已经注释的非常完善了。以下是girl-face-rec.py
# -*- coding: UTF-8 -*-
import sys,os,dlib,glob,numpy
from skimage import io
if len(sys.argv) != 5:
print "请检查参数是否正确"
exit()
# 1.人脸关键点检测器
predictor_path = sys.argv[1]
# 2.人脸识别模型
face_rec_model_path = sys.argv[2]
# 3.候选人脸文件夹
faces_folder_path = sys.argv[3]
# 4.需识别的人脸
img_path = sys.argv[4]
# 1.加载正脸检测器
detector = dlib.get_frontal_face_detector()
# 2.加载人脸关键点检测器
sp = dlib.shape_predictor(predictor_path)
# 3. 加载人脸识别模型
facerec = dlib.face_recognition_model_v1(face_rec_model_path)
# win = dlib.image_window()
# 候选人脸描述子list
descriptors = []
# 对文件夹下的每一个人脸进行:
# 1.人脸检测
# 2.关键点检测
# 3.描述子提取
for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
print("Processing file: {}".format(f))
img = io.imread(f)
#win.clear_overlay()
#win.set_image(img)
# 1.人脸检测
dets = detector(img, 1)
print("Number of faces detected: {}".format(len(dets)))
for k, d in enumerate(dets):
# 2.关键点检测
shape = sp(img, d)
# 画出人脸区域和和关键点
# win.clear_overlay()
# win.add_overlay(d)
# win.add_overlay(shape)
# 3.描述子提取,128D向量
face_descriptor = facerec.compute_face_descriptor(img, shape)
# 转换为numpy array
v = numpy.array(face_descriptor)
descriptors.append(v)
# 对需识别人脸进行同样处理
# 提取描述子,不再注释
img = io.imread(img_path)
dets = detector(img, 1)
dist = []
for k, d in enumerate(dets):
shape = sp(img, d)
face_descriptor = facerec.compute_face_descriptor(img, shape)
d_test = numpy.array(face_descriptor)
# 计算欧式距离
for i in descriptors:
dist_ = numpy.linalg.norm(i-d_test)
dist.append(dist_)
# 候选人名单
candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']
# 候选人和距离组成一个dict
c_d = dict(zip(candidate,dist))
cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])
print "\n The person is: ",cd_sorted[0][0]
dlib.hit_enter_to_continue()
4.运行结果
我们在.py所在的文件夹下打开命令行,运行如下命令
python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg
由于shape_predictor_68_face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat名字实在太长,所以我把它们重命名为1.dat和2.dat。
运行结果如下:
The person is Bingbing。
记忆力不好的同学可以翻上去看看test1.jpg是谁的图片。有兴趣的话可以把四张测试图片都运行下试试。
这里需要说明的是,前三张图输出结果都是非常理想的。但是第四张测试图片的输出结果是候选人4。对比一下两张图片可以很容易发现混淆的原因。
机器毕竟不是人,机器的智能还需要人来提升。
有兴趣的同学可以继续深入研究如何提升识别的准确率。比如每个人的候选图片用多张,然后对比和每个人距离的平均值之类的。全凭自己了。
㈡ Python如何图像识别
首先,先定位好问题是属于图像识别任务中的哪一类,最好上传一张植物叶子的图片。因为目前基于深度学习的卷积神经网络(CNN)确实在图像识别任务中取得很好的效果,深度学习属于机器学习,其研究的范式,或者说处理图像的步骤大体上是一致的。
1、第一步,准备好数据集,这里是指,需要知道输入、输出(视任务而定,针对你这个问题,建议使用有监督模型)是什么。你可以准备一个文件夹,里面存放好植物叶子的图像,而每张图像对应一个标签(有病/没病,或者是多类别标签,可能具体到哪一种病)。
具体实现中,会将数据集分为三个:训练集(计算模型参数)、验证集(调参,这个经常可以不需要实现划分,在python中可以用scikit-learn中的函数解决。测试集用于验证模型的效果,与前面两个的区别是,模型使用训练集和验证集时,是同时使用了输入数据和标签,而在测试阶段,模型是用输入+模型参数,得到的预测与真实标签进行对比,进而评估效果。
2、确定图像识别的任务是什么?
图像识别的任务可以分为四个:图像分类、目标检测、语义分割、实例分割,有时候是几个任务的结合。
图像分类是指以图像为输入,输出对该图像内容分类的描述,可以是多分类问题,比如猫狗识别。通过足够的训练数据(猫和狗的照片-标签,当然现在也有一系列的方法可以做小样本训练,这是细节了,这里并不敞开讲),让计算机/模型输出这张图片是猫或者狗,及其概率。当然,如果你的训练数据还有其它动物,也是可以的,那就是图像多分类问题。
目标检测指将图像或者视频中的目标与不感兴趣的部分区分开,判断是否存在目标,并确定目标的具体位置。比如,想要确定这只狗所佩戴的眼睛的位置,输入一张图片,输出眼睛的位置(可视化后可以讲目标区域框出来)。
看到这里,应该想想植物叶子诊断疾病的问题,只需要输入一整张植物叶子的图片,输出是哪种疾病,还是需要先提取叶子上某些感兴趣区域(可能是病变区域),在用病变区域的特征,对应到具体的疾病?
语义分割是当今计算机视觉领域的关键问题之一,宏观上看,语义分割是一项高层次的任务。其目的是以一些原始图像作为输入,输出具有突出显示的感兴趣的掩膜,其实质上是实现了像素级分类。对于输入图片,输出其舌头区域(注意可以是不规则的,甚至不连续的)。
而实例分割,可以说是在语义分割的基础上,在像素层面给出属于每个实例的像素。
看到这里,可以具体思考下自己的问题是对应其中的哪一类问题,或者是需要几种任务的结合。
3、实际操作
可以先通过一个简单的例子入手,先了解构建这一个框架需要准备什么。手写数字识别可以说是深度学习的入门数据集,其任务也经常作为该领域入门的案例,也可以自己在网上寻找。
㈢ python 怎么解析pdf文件的图片和内容
http://www.boddie.org.uk/david/Projects/Python/pdftools/
没用过,参考这个吧。
㈣ Python深度学习之图像识别
作者 | 周伟能
来源 | 小叮当讲SAS和Python
Python在机器学习(人工智能,AI)方面有着很大的优势。谈到人工智能,一般也会谈到其实现的语言Python。前面有几讲也是关于机器学习在图像识别中的应用。今天再来讲一个关于运用google的深度学习框架tensorflow和keras进行训练深度神经网络,并对未知图像进行预测。
导入python模块
导入图像数据
合并列表数据
将图片数据转化为数组
显示一张图片
训练神经网络
我们可以看到测试集的准确率达到99.67%
预测一个图像
预测为汽车的概率为100%。(括号内为真实标签)
预测为美女的概率为100%。(括号内为真实标签)
测试集中前15个图像预测完全正确。Nice!
最后我们来识别单张图片。
结果预测为汽车。Nice!
最后来预测一下外部随便下载的汽车或美女图片
预测为汽车,不错!
小编这里有10张图片,前5张为汽车图片,后五张为美女图片。
下面进行批量预测:
结果也是完全正确。
看到这里,感觉神经网络是不是很神奇,要想让神经网络预测得准确,我们就必须给予大量的数据进行训练模型,优化模型,以至于达到准确识别图像的目的,图像识别作为人工智能的一部分,现在已经慢慢走向成熟,虽然机器也有出错的时候,但是进过不断优化,错误率将会越来越小,相信机器智能或者人工智能时代能够创造出更多智能而美好的东西。为社会,为人类的自由做出更大的贡献。
㈤ python能做什么有趣的东西
python能做什么有趣的东西?下面给大家介绍35个Python实例:
1. Python3 实现图片识别
2. Python3 图片隐写术
3. 200 行 Python 代码实现 2048
4. Python实现3D建模工具
5. 使用 Python 定制词云
相关推荐:《Python教程》
6. Python3 智能裁切图片
7.微信变为聊天机器人
8. 使用 Python 解数学方程
9. 使用 Python 创建照片马赛克
10. Python 基于共现提取《釜山行》人物关系
11. Python 气象数据分析:《Python 数据分析实战》
12. NBA常规赛结果预测:利用Python进行比赛数据分析
13. Python 的循环语句和隐含波动率的计算
14. K-近邻算法实现手写数字识别系统
15. 数独游戏的 Python 实现与破解
16. 基于 Flask 与 MySQL 实现番剧推荐系
17. Python 实现英文新闻摘要自动提取
18. Python 解决哲学家就餐问题
19. Ebay 在线拍卖数据分析
20. 神经网络实现人脸识别任务
21. 使用 Python 解数学方程
22. Python3 实现火车票查询工具
23. Python 实现端口扫描器
24. Python3 实现可控制肉鸡的反向Shell
25. Python 实现 FTP 弱口令扫描器
26. 基于PyQt5 实现地图中定位相片拍摄位置
27. Python实现网站模拟登陆
28.Python实现简易局域网视频聊天工具
29. 基于 TCP 的 python 聊天程序
30. Python3基于Scapy实现DDos
31. 高德API + Python 解决租房问题
32. 基于 Flask 与 RethinkDB 实现TODO List
33. Python3 实现简单的 Web 服务器
34. Python 实现 Redis 异步客户端
35. 仿 StackOverflow 开发在线问答系统
㈥ python处理图片数据
目录
1.机器是如何存储图像的?
2.在Python中读取图像数据
3.从图像数据中提取特征的方法#1:灰度像素值特征
4.从图像数据中提取特征的方法#2:通道的平均像素值
5.从图像数据中提取特征的方法#3:提取边缘
是一张数字8的图像,仔细观察就会发现,图像是由小方格组成的。这些小方格被称为像素。
但是要注意,人们是以视觉的形式观察图像的,可以轻松区分边缘和颜色,从而识别图片中的内容。然而机器很难做到这一点,它们以数字的形式存储图像。请看下图:
机器以数字矩阵的形式储存图像,矩阵大小取决于任意给定图像的像素数。
假设图像的尺寸为180 x 200或n x m,这些尺寸基本上是图像中的像素数(高x宽)。
这些数字或像素值表示像素的强度或亮度,较小的数字(接近0)表示黑色,较大的数字(接近255)表示白色。通过分析下面的图像,读者就会弄懂到目前为止所学到的知识。
下图的尺寸为22 x 16,读者可以通过计算像素数来验证:
图片源于机器学习应用课程
刚才讨论的例子是黑白图像,如果是生活中更为普遍的彩色呢?你是否认为彩色图像也以2D矩阵的形式存储?
彩色图像通常由多种颜色组成,几乎所有颜色都可以从三原色(红色,绿色和蓝色)生成。
因此,如果是彩色图像,则要用到三个矩阵(或通道)——红、绿、蓝。每个矩阵值介于0到255之间,表示该像素的颜色强度。观察下图来理解这个概念:
图片源于机器学习应用课程
左边有一幅彩色图像(人类可以看到),而在右边,红绿蓝三个颜色通道对应三个矩阵,叠加三个通道以形成彩色图像。
请注意,由于原始矩阵非常大且可视化难度较高,因此这些不是给定图像的原始像素值。此外,还可以用各种其他的格式来存储图像,RGB是最受欢迎的,所以笔者放到这里。读者可以在此处阅读更多关于其他流行格式的信息。
用Python读取图像数据
下面开始将理论知识付诸实践。启动Python并加载图像以观察矩阵:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)
#checking image shape
image.shape, image
(28,28)
矩阵有784个值,而且这只是整个矩阵的一小部分。用一个LIVE编码窗口,不用离开本文就可以运行上述所有代码并查看结果。
下面来深入探讨本文背后的核心思想,并探索使用像素值作为特征的各种方法。
方法#1:灰度像素值特征
从图像创建特征最简单的方法就是将原始的像素用作单独的特征。
考虑相同的示例,就是上面那张图(数字‘8’),图像尺寸为28×28。
能猜出这张图片的特征数量吗?答案是与像素数相同!也就是有784个。
那么问题来了,如何安排这784个像素作为特征呢?这样,可以简单地依次追加每个像素值从而生成特征向量。如下图所示:
下面来用Python绘制图像,并为该图像创建这些特征:
image = imread('puppy.jpeg', as_gray=True)
image.shape, imshow(image)
(650,450)
该图像尺寸为650×450,因此特征数量应为297,000。可以使用NumPy中的reshape函数生成,在其中指定图像尺寸:
#pixel features
features = np.reshape(image, (660*450))
features.shape, features
(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])
这里就得到了特征——长度为297,000的一维数组。很简单吧?在实时编码窗口中尝试使用此方法提取特征。
但结果只有一个通道或灰度图像,对于彩色图像是否也可以这样呢?来看看吧!
方法#2:通道的平均像素值
在读取上一节中的图像时,设置了参数‘as_gray = True’,因此在图像中只有一个通道,可以轻松附加像素值。下面删除参数并再次加载图像:
image = imread('puppy.jpeg')
image.shape
(660, 450, 3)
这次,图像尺寸为(660,450,3),其中3为通道数量。可以像之前一样继续创建特征,此时特征数量将是660*450*3 = 891,000。
或者,可以使用另一种方法:
生成一个新矩阵,这个矩阵具有来自三个通道的像素平均值,而不是分别使用三个通道中的像素值。
下图可以让读者更清楚地了解这一思路:
这样一来,特征数量保持不变,并且还能考虑来自图像全部三个通道的像素值。
image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape
(660, 450)
现有一个尺寸为(660×450×3)的三维矩阵,其中660为高度,450为宽度,3是通道数。为获取平均像素值,要使用for循环:
for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)
新矩阵具有相同的高度和宽度,但只有一个通道。现在,可以按照与上一节相同的步骤进行操作。依次附加像素值以获得一维数组:
features = np.reshape(feature_matrix, (660*450))
features.shape
(297000,)
方法#3:提取边缘特征
请思考,在下图中,如何识别其中存在的对象:
识别出图中的对象很容易——狗、汽车、还有猫,那么在区分的时候要考虑哪些特征呢?形状是一个重要因素,其次是颜色,或者大小。如果机器也能像这样识别形状会怎么样?
类似的想法是提取边缘作为特征并将其作为模型的输入。稍微考虑一下,要如何识别图像中的边缘呢?边缘一般都是颜色急剧变化的地方,请看下图:
笔者在这里突出了两个边缘。这两处边缘之所以可以被识别是因为在图中,可以分别看到颜色从白色变为棕色,或者由棕色变为黑色。如你所知,图像以数字的形式表示,因此就要寻找哪些像素值发生了剧烈变化。
假设图像矩阵如下:
图片源于机器学习应用课程
该像素两侧的像素值差异很大,于是可以得出结论,该像素处存在显着的转变,因此其为边缘。现在问题又来了,是否一定要手动执行此步骤?
当然不!有各种可用于突出显示图像边缘的内核,刚才讨论的方法也可以使用Prewitt内核(在x方向上)来实现。以下是Prewitt内核:
获取所选像素周围的值,并将其与所选内核(Prewitt内核)相乘,然后可以添加结果值以获得最终值。由于±1已经分别存在于两列之中,因此添加这些值就相当于获取差异。
还有其他各种内核,下面是四种最常用的内核:
图片源于机器学习应用课程
现在回到笔记本,为同一图像生成边缘特征:
#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline
#reading the image
image = imread('puppy.jpeg',as_gray=True)
#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)
imshow(edges_prewitt_vertical, cmap='gray')
㈦ 如何使用python绘制gwas分析中的曼哈顿图和qq图
曼哈顿图
将示例数据下载下来:
wget https://raw.githubusercontent.com/ShujiaHuang/geneview-data/master/GOYA.csv
先简单地查看一下数据的格式:
chrID,rsID,position,pvalue
1,rs3094315,742429,0.144586
1,rs3115860,743268,0.230022
1,rs12562034,758311,0.644366
1,rs12124819,766409,0.146269
1,rs4475691,836671,0.458197
1,rs28705211,890368,0.362731
1,rs13303118,908247,0.22912
1,rs9777703,918699,0.37948
1,rs3121567,933331,0.440824
一共是4列(逗号分隔),分别为:[1]染色体编号,[2]SNP rs 编号,[3] 位点在染色体上的位置,[4]显着性差异程度(pvalue)。在本例曼哈顿图中我们只需要使用第1,3和4列;而QQ图则只需要第4列——pvalue。
下面先从绘制曼哈顿图开始。我们先将需要的数据读取到一个列表中,可以这样做:
import csv
data = []
with open("GOYA.csv") as f:
f_csv = csv.reader(f)
headers = next(f_csv)
data = [[row[0], int(row[2]), float(row[3])] for row in f_csv]
现在GOYA.csv中的数据就都存放在data列表中了,由于Python在读取文件中数据时,都是以string类型存放,因此对于第3和第4列的数据有必要事先把做点类型转换。
接下来,调用geneview中的曼哈顿图函数。
import matplotlib.pyplot as plt
from geneview.gwas import manhattanplot
ax = manhattanplot(data, xlabel="Chromosome", ylabel="-Log10(P-value)") # 这就是Manhattan plot的函数
plt.show()
只需这样的一句代码就能创建一个漂亮的曼哈顿图,有必要再次指出的是,geneview是以matplotlib为基础开发出来的,所创建的图形对象实际上仍属于matplotlib,geneview内部自定义了很多图形风格,同时封装了大量只属于基因组数据的图表类型,但图形的输出格式以及界面显示都仍和matplotlib一样,因此在这里我们使用matplotlib.pyplot的show()函数(上例中:plt.show())将所绘制出来的曼哈顿图显示出来。如果要将图形保存下来,则只需执行`plt.savefig("man.png")`,这样就会在该目录下生成一个名为‘man.png’png格式的曼哈顿图,若是要存为pdf格式,则只需将所要保存的文件名后缀改成‘.pdf’(plt.savefig("man.pdf"))就可以了。下面这些格式:emf,
eps, pdf, png, jpg, ps, raw, rgba, svg,
svgz等都是支持的,至于最新的还有多少种,还请参照matplotlib文档中说明。
此外,geneview中的每个画图函数都有着足够的灵活性,我们也可以根据自己的需要做一些调整,比如:
xtick = ['1', '2','3','4','5','6','7','8','9','10','11','12','13','14','16','18', '20','22']
manhattanplot(data,
xlabel="Chromosome", # 设置x轴名字
ylabel="-Log10(P-value)", # 设置y轴名字
xtick_label_set = set(xtick), # 限定横坐标轴上的刻度显示
s=40, # 设置图中散点的大小
alpha=0.5, # 调整散点透明度
color="#f28b1e,#9a0dea,#ea0dcc,#63b8ff", # 设置新的颜色组合
)
实现新的颜色组合、限定x轴上的刻度显示和散点大小的调节。甚至还可以将散点改为线:
manhattanplot(data,
xlabel="Chromosome", # 设置x轴名字
ylabel="-Log10(P-value)", # 设置y轴名字
xtick_label_set = set(xtick), # 限定横坐标轴上的刻度显示
alpha=0.5, # 调整散点透明度
color="#f28b1e,#9a0dea,#ea0dcc,#63b8ff", # 设置新的颜色组合
kind="line"
)
其它方面的调整请查看geneview文档中的相关说明。
Q-Q图
qq图只需用到上例中的pvalue那一列:
import csv
import matplotlib.pyplot as plt
from geneview.gwas import qqplot
pvalue=[]
with open("GOYA.csv") as f:
f_csv = csv.reader(f)
headers = next(f_csv)
pvalue = [float(row[3]) for row in f_csv]
ax = qqplot(pvalue, color="#00bb33", xlabel="Expected p-value(-log10)", ylabel="Observed p-value(-log10)") # Q-Q 图
plt.show()
同样,也可以根据自己的需要对改图进行相关的调整。
以上,便是如何使用Python来制作Manhattan图和QQ图的方法,geneview的集成函数简化了这样的一个过程。
另外,如果你也看过丹麦人的这个GOYA研究,就会发现实际以上的两个图和其文章中的基本是一致的,当然我自己做了些数据清洗的操作,结果上仍然会有些许的不同。虽然此刻下结论还有点为时尚早,但总的来讲,我应该也可以通过这个数据集比较顺利的将其结果重复出来了。
最后,附上利用geneview画曼哈顿图和QQ图的代码:
(1)曼哈顿图:
(2)QQ图:
㈧ python图片解析是否有
from PIL import Image ### 此处为导出包,注意字母大小写import os, os.path # 指明被遍历的文件夹rootdir =os.path.abspath(os.curdir)+'/Image/'rootdir1=os.path.abspath(os.pardir)+"/Image/" #打包用if os.path.isdir(rootdir): passelse: rootdir=rootdir1 size = 315, 560i=0 for parent,dirnames,filenames in os.walk(rootdir): for filename in filenames: infile=os.path.join(parent,filename) im = Image.open(infile) ### 此处Image.open(dir)为多数对象应用的基础. im.thumbnail(size) ### 此处size 为长度为2的tuple类型,改变图片分辨率 im.save(infile) ### im.save(dir),图片处理的最后都用这个,就是保存处理过后的图片 i+=1 print(i,"Done")
㈨ 如何python pil开发图像识别
1. 简介。
图像处理是一门应用非常广的技术,而拥有非常丰富第三方扩展库的 Python 当然不会错过这一门盛宴。PIL (Python Imaging Library)是 Python 中最常用的图像处理库,目前版本为 1.1.7,我们可以在这里下载学习和查找资料。
Image 类是 PIL 库中一个非常重要的类,通过这个类来创建实例可以有直接载入图像文件,读取处理过的图像和通过抓取的方法得到的图像这三种方法。
2. 使用。
导入 Image 模块。然后通过 Image 类中的 open 方法即可载入一个图像文件。如果载入文件失败,则会引起一个 IOError ;若无返回错误,则 open 函数返回一个 Image 对象。现在,我们可以通过一些对象属性来检查文件内容,即:
1 >>> import Image
2 >>> im = Image.open("j.jpg")
3 >>> print im.format, im.size, im.mode
4 JPEG (440, 330) RGB
这里有三个属性,我们逐一了解。
format : 识别图像的源格式,如果该文件不是从文件中读取的,则被置为 None 值。
size : 返回的一个元组,有两个元素,其值为象素意义上的宽和高。
mode : RGB(true color image),此外还有,L(luminance),CMTK(pre-press image)。
现在,我们可以使用一些在 Image 类中定义的方法来操作已读取的图像实例。比如,显示最新载入的图像:
1 >>>im.show()
2 >>>
输出原图:
3.5 更多关于图像文件的读取。
最基本的方式:im = Image.open("filename")
类文件读取:fp = open("filename", "rb"); im = Image.open(fp)
字符串数据读取:import StringIO; im = Image.open(StringIO.StringIO(buffer))
从归档文件读取:import TarIO; fp = TarIo.TarIO("Image.tar", "Image/test/lena.ppm"); im = Image.open(fp)
基本的 PIL 目前就练习到这里。其他函数的功能可点击这里进一步阅读。
㈩ 怎样利用Python进行图片分析
fromPILimportImage###此处为导出包,注意字母大小写
importos,os.path
#指明被遍历的文件夹
rootdir=os.path.abspath(os.curdir)+'/Image/'
rootdir1=os.path.abspath(os.pardir)+"/Image/"
#打包用
ifos.path.isdir(rootdir):
pass
else:
rootdir=rootdir1
size=315,560
i=0
forparent,dirnames,filenamesinos.walk(rootdir):
forfilenameinfilenames:
infile=os.path.join(parent,filename)
im=Image.open(infile)###此处Image.open(dir)为多数对象应用的基础.
im.thumbnail(size)###此处size为长度为2的tuple类型,改变图片分辨率
im.save(infile)###im.save(dir),图片处理的最后都用这个,就是保存处理过后的图片
i+=1
print(i,"Done")
要用pil包 安装如下:pipinstallpillow