导航:首页 > 编程语言 > python多任务处理

python多任务处理

发布时间:2022-05-15 13:58:33

Ⅰ 有两个独立的任务,想分配不同数量的逻辑处理器去同时并行处理这两个独立任务,python可以实现吗

python并没有真正意义上的多线程,如果是计算型任务可以考虑多进程或者换个编程语言,如果是io型的python的多线程或者协程都可以。最好不要使用python进行多任务,python并不能真正发挥cpu多核优势

Ⅱ python多线程和多进程的区别有哪些

python多线程和多进程的区别有七种:

1、多线程可以共享全局变量,多进程不能。

2、多线程中,所有子线程的进程号相同;多进程中,不同的子进程进程号不同。

3、线程共享内存空间;进程的内存是独立的。

4、同一个进程的线程之间可以直接交流;两个进程想通信,必须通过一个中间代理来实现。

5、创建新线程很简单;创建新进程需要对其父进程进行一次克隆。

6、一个线程可以控制和操作同一进程里的其他线程;但是进程只能操作子进程。

7、两者最大的不同在于:在多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响;而多线程中,所有变量都由所有线程共享。

更多Python知识,请关注:Python自学网!!

Ⅲ 为什么有人说 Python 的多线程是鸡肋

因为 Python 中臭名昭着的 GIL。

那么 GIL 是什么?为什么会有 GIL?多线程真的是鸡肋吗? GIL 可以去掉吗?带着这些问题,我们一起往下看,同时需要你有一点点耐心。

多线程是不是鸡肋,我们先做个实验,实验非常简单,就是将数字 “1亿” 递减,减到 0 程序就终止,这个任务如果我们使用单线程来执行,完成时间会是多少?使用多线程又会是多少?show me the code

那么把 GIL 去掉可行吗?

还真有人这么干多,但是结果令人失望,在1999年Greg Stein 和Mark Hammond 两位哥们就创建了一个去掉 GIL 的 Python 分支,在所有可变数据结构上把 GIL 替换为更为细粒度的锁。然而,做过了基准测试之后,去掉GIL的 Python 在单线程条件下执行效率将近慢了2倍。

Python之父表示:基于以上的考虑,去掉GIL没有太大的价值而不必花太多精力。

Ⅳ Python主要内容学的是什么

这是Python全栈开发+人工智能课程大纲:
阶段一:Python开发基础
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
阶段二:Python高级编程和数据库开发
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
阶段三:前端开发
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
阶段四:WEB框架开发
Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
阶段五:爬虫开发
Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
阶段六:全栈项目实战
Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
阶段七:数据分析
Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
阶段八:人工智能
Python全栈开发与人工智能之人工智能学习内容包括:机器学习、数据分析 、图像识别、自然语言翻译等。
阶段九:自动化运维&开发
Python全栈开发与人工智能之自动化运维&开发学习内容包括:CMDB资产管理系统开发、IT审计+主机管理系统开发、分布式主机监控系统开发等。
阶段十:高并发语言GO开发
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。

Ⅳ python 多线程和多进程的区别 mutiprocessing theading

在socketserver服务端代码中有这么一句:

server = socketserver.ThreadingTCPServer((ip,port), MyServer)

ThreadingTCPServer这个类是一个支持多线程和TCP协议的socketserver,它的继承关系是这样的:

class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass

右边的TCPServer实际上是主要的功能父类,而左边的ThreadingMixIn则是实现了多线程的类,ThreadingTCPServer自己本身则没有任何代码。

MixIn在Python的类命名中很常见,称作“混入”,戏称“乱入”,通常为了某种重要功能被子类继承。

我们看看一下ThreadingMixIn的源代码:

class ThreadingMixIn:

daemon_threads = False

def process_request_thread(self, request, client_address):
try:
self.finish_request(request, client_address)
self.shutdown_request(request)
except:
self.handle_error(request, client_address)
self.shutdown_request(request)

def process_request(self, request, client_address):

t = threading.Thread(target = self.process_request_thread,
args = (request, client_address))
t.daemon = self.daemon_threads
t.start()

在ThreadingMixIn类中,其实就定义了一个属性,两个方法。其中的process_request()方法实际调用的正是Python内置的多线程模块threading。这个模块是Python中所有多线程的基础,socketserver本质上也是利用了这个模块。

socketserver通过threading模块,实现了多线程任务处理能力,可以同时为多个客户提供服务。

那么,什么是线程,什么是进程?

进程是程序(软件,应用)的一个执行实例,每个运行中的程序,可以同时创建多个进程,但至少要有一个。每个进程都提供执行程序所需的所有资源,都有一个虚拟的地址空间、可执行的代码、操作系统的接口、安全的上下文(记录启动该进程的用户和权限等等)、唯一的进程ID、环境变量、优先级类、最小和最大的工作空间(内存空间)。进程可以包含线程,并且每个进程必须有至少一个线程。每个进程启动时都会最先产生一个线程,即主线程,然后主线程会再创建其他的子线程。

线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不独立拥有系统资源,但它可与同属一个进程的其它线程共享该进程所拥有的全部资源。每一个应用程序都至少有一个进程和一个线程。在单个程序中同时运行多个线程完成不同的被划分成一块一块的工作,称为多线程。

举个例子,某公司要生产一种产品,于是在生产基地建设了很多厂房,每个厂房内又有多条流水生产线。所有厂房配合将整个产品生产出来,单个厂房内的流水线负责生产所属厂房的产品部件,每个厂房都拥有自己的材料库,厂房内的生产线共享这些材料。公司要实现生产必须拥有至少一个厂房一条生产线。换成计算机的概念,那么这家公司就是应用程序,厂房就是应用程序的进程,生产线就是某个进程的一个线程。

线程的特点:

线程是一个execution context(执行上下文),即一个cpu执行时所需要的一串指令。假设你正在读一本书,没有读完,你想休息一下,但是你想在回来时继续先前的进度。有一个方法就是记下页数、行数与字数这三个数值,这些数值就是execution context。如果你的室友在你休息的时候,使用相同的方法读这本书。你和她只需要这三个数字记下来就可以在交替的时间共同阅读这本书了。

线程的工作方式与此类似。CPU会给你一个在同一时间能够做多个运算的幻觉,实际上它在每个运算上只花了极少的时间,本质上CPU同一时刻只能干一件事,所谓的多线程和并发处理只是假象。CPU能这样做是因为它有每个任务的execution context,就像你能够和你朋友共享同一本书一样。

进程与线程区别:

Ⅵ python 多线程

python支持多线程效果还不错,很多方面都用到了python 多线程的知识,我前段时间用python 多线程写了个处理生产者和消费者的问题,把代码贴出来给你看下:
#encoding=utf-8
import threading
import random
import time
from Queue import Queue

class Procer(threading.Thread):

def __init__(self, threadname, queue):
threading.Thread.__init__(self, name = threadname)
self.sharedata = queue

def run(self):
for i in range(20):
print self.getName(),'adding',i,'to queue'
self.sharedata.put(i)
time.sleep(random.randrange(10)/10.0)
print self.getName(),'Finished'

# Consumer thread

class Consumer(threading.Thread):

def __init__(self, threadname, queue):
threading.Thread.__init__(self, name = threadname)
self.sharedata = queue

def run(self):

for i in range(20):
print self.getName(),'got a value:',self.sharedata.get()
time.sleep(random.randrange(10)/10.0)
print self.getName(),'Finished'

# Main thread

def main():

queue = Queue()
procer = Procer('Procer', queue)
consumer = Consumer('Consumer', queue)
print 'Starting threads ...'
procer.start()
consumer.start()
procer.join()
consumer.join()
print 'All threads have terminated.'
if __name__ == '__main__':
main()

如果你想要了解更多的python 多线程知识可以点下面的参考资料的地址,希望对有帮助!

Ⅶ python多线程的问题如何处理

在python里线程出问题,可能会导致主进程崩溃。 虽然python里的线程是操作系统的真实线程。

那么怎么解决呢?通过我们用进程方式。子进程崩溃后,会完全的释放所有的内存和错误状态。所以进程更安全。 另外通过进程,python可以很好的绕过GIL,这个全局锁问题。

但是进程也是有局限的。不要建立超过CPU总核数的进程,否则效率也不高。

简单的总结一下。
当我们想实现多任务处理时,首先要想到使用multiprocessing, 但是如果觉着进程太笨重,那么就要考虑使用线程。 如果多任务处理中需要处理的太多了,可以考虑多进程,每个进程再采用多线程。如果还处理不要,就要使用轮询模式,比如使用poll event, twisted等方式。如果是GUI方式,则要通过事件机制,或者是消息机制处理,GUI使用单线程。

所以在python里线程不要盲目用, 也不要滥用。 但是线程不安全是事实。如果仅仅是做几个后台任务,则可以考虑使用守护线程做。如果需要做一些危险操作,可能会崩溃的,就用子进程去做。 如果需要高度稳定性,同时并发数又不高的服务。则强烈建议用多进程的multiprocessing模块实现。

linux或者是unix里,进程的使用代价没有windows高。还是可以接受的。

Ⅷ python 多进程读取同一个循环处理、可以用multiprocessing

可以每个在func中加上一个参数data,data是这个线程处理的数据;

多线程处理的时候,给每个线程分配相应的data就可以了。


给个示例:

#-*-coding:utf-8-*-
importthread,threading
importtime

defFuncTest(tdata):
printtdata

classmythread(threading.Thread):
def__init__(self,threadname):
threading.Thread.__init__(self)

defrun(self):
lock.acquire()
FuncTest(ft)
lock.release()

defMutiThread(num):
threads=[]
i=0
globalft
forxinxrange(num):
threads.append(mythread(num))
fortinthreads:
time.sleep(0.5)
lock.acquire()
ft=GetThreadParam(datafile,num,i)
#print'[%s]Thread:%s,Testdata:%s'%(time.ctime(),t,ft)
i=i+1
t.start()
lock.release()
fortinthreads:
t.join()

defGetThreadParam(datafile,num,curthread):
#线程数需要小于文件行数
f=open(datafile,'r')
lines=f.readlines()
divres=divmod(len(lines),num)
ifcurthread<(num-1):
res=lines[curthread*divres[0]:(curthread+1)*divres[0]]
elifcurthread==(num-1):
res=lines[curthread*divres[0]:((curthread+1)*divres[0]+divres[1])]
returnres
f.close()

if__name__=='__main__':

globalnum,lock
datafile='a.txt'

num=3#num并发数

lock=threading.Lock()
MutiThread(num)

a.txt文件内容如下

1

2

3

4

5

6

7

8

9

10


3个线程并发时,运行结果:

>>>

['1 ', '2 ', '3 ']

['4 ', '5 ', '6 ']

['7 ', '8 ', '9 ', '10']

Ⅸ python中多进程和多线程的区别

什么是线程、进程?
进程(process)与线程(thread)是操作系统的基本概念,它们比较抽象,不容易掌握。
关于这两者,最经典的一句话就是“进程是资源分配的最小单位,线程是CPU调度的最小单位”,线程是程序中一个单一的顺序控制流程,进程内一个相对独立的、可调度的执行单元,是系统独立调度和分配CPU的基本单位指运行中的程序的调度单位,在单个程序中同时运行多个线程完成不同的工作,称为多线程。
进程与线程的区别是什么?
进程是资源分配的基本单位,所有与该进程有关的资源,都被记录在进程控制块PCB中,以表示该进程拥有这些资源或正在使用它们,另外,进程也是抢占处理机的调度单位,它拥有一个完整的虚拟地址空间,当进程发生调度时,不同的进程拥有不同的虚拟地址空间,而同一进程内的不同线程共享同一地址空间。
与进程相对应的,线程与资源分配无关,它属于某一个进程,并与进程内的其他线程一起共享进程的资源,线程只由相关堆栈(系统栈或用户栈)寄存器和线程控制表TCB组成,寄存器可被用来存储线程内的局部变量,但不能存储其他线程的相关变量。
通常在一个进程中可以包含若干个线程,它们可以利用进程所拥有的资源,在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位。
由于线程比进程更小,基本上不拥有系统资源,所以对它的调度所付出的开销就会小得多,能更高效的提高系统内多个程序间并发执行的程度,从而显着提高系统资源的利用率和吞吐量。
因而近年来推出的通用操作系统都引入了线程,以便进一步提高系统的并发性,并把它视为现代操作系统的一个重要指标。

阅读全文

与python多任务处理相关的资料

热点内容
手机号码如何加密 浏览:424
沈阳程序员培训学校 浏览:538
一般服务器如何配置 浏览:895
图片怎样加密发邮件 浏览:619
万虹电脑文件夹密码忘记了怎么办 浏览:631
rc108单片机 浏览:867
战雷如何改变服务器 浏览:674
mactelnet命令 浏览:51
压缩袋压缩了拿出来 浏览:401
安卓手机相机怎么设置权限 浏览:121
美女程序员转行做主播 浏览:671
办理解压房产 浏览:575
道路工程概论pdf 浏览:388
超棒数学速算法大全 浏览:937
小米易语言登录源码 浏览:31
砖墙内加密钢筋 浏览:992
乡关何处pdf 浏览:84
小猪领赞小程序源码 浏览:336
python曲线如何原路返回 浏览:432
pdf快速看图破解版 浏览:295