导航:首页 > 编程语言 > python35scrapy例子

python35scrapy例子

发布时间:2022-05-27 19:56:28

❶ 求帮忙解释一下下面两段python代码的基于scrapy的网络爬虫框架

简单的理解就是:
第一段解析网页内容,并提取需要的数据(这里涉及到很多python的基础知识);

第二段是将提取到的数据保存到文件。

❷ 怎么使用python脚本运行多个scrapy爬虫

1、创建多个spider, scrapy genspider spidername domain
scrapy genspider CnblogsHomeSpider cnblogs.com

通过上述命令创建了一个spider name为CnblogsHomeSpider的爬虫,start_urls为 、查看项目下有几个爬虫scrapy list
[root@bogon cnblogs]# scrapy list
CnblogsHomeSpider
CnblogsSpider

由此可以知道我的项目下有两个spider,一个名称叫CnblogsHomeSpider,另一个叫CnblogsSpider。

❸ python scrapy 怎么将爬取的内容写出

首先,安装Python,坑太多了,一个个爬。由于我是windows环境,没钱买mac, 在安装的时候遇到各种各样的问题,确实各种各样的依赖。安装教程不再赘述。如果在安装的过程中遇到 ERROR:需要windows c/c++问题,一般是由于缺少windows开发编译环境,晚上大多数教程是安装一个VisualStudio,太不靠谱了,事实上只要安装一个WindowsSDK就可以了。下面贴上我的爬虫代码:

爬虫主程序:

[python]view plain

❹ python3 scrapy怎么爬取<div>内的多个<br>

我今天刚学了这个,你用xpath写好选择路径就会返回形成一个列表,列表中有你想要的信息

❺ 如何在scrapy框架下,用python实现爬虫自动跳转页面来抓去网页内容

(1)一种是像我之前爬虫新京报网的新闻,下一页的url可以通过审查元素获得,第一页的网址是http://www.bjnews.com.cn/news/list-43-page-1.html
在第一页的时候,下一页按钮的审查元素是

我们通过获取next_pages = response.xpath('//div[@id="page"]/a[@class="next"]/@href').extract()[0]
,便可以得到下一页的url,next_page = "http://www.bjnews.com.cn" + next_pages,

这一部分的完整代码为:

page_link=set() #保存下一页页面url

content_link=set() #保存页面内所有可获得的url

rules={'page':LinkExtractor(allow=(r'^http://www.bjnews.com.cn/\w+/2016/\d{2}/\d{2}/\d{6}.html
))}

start_urls={'http://www.bjnews.com.cn/news/list-43-page-1.html'}

def parse(self, response):

#爬取一个页面内的所有url链接

    for link in self.rules['page'].extract_links(response):

        if link.url not in self.content_link:

            self.page_link.add(link.url)

            yield scrapy.Request(link.url, callback=self.parse_item)

#自动获取下一页的url

    next_pages = response.xpath('//div[@id="page"]/a[@class="next"]/@href').extract()[0]

    if next_pages:

        next_page = "http://www.bjnews.com.cn" + next_pages

        self.page_link.add(next_page)

        yield scrapy.Request(next_page, callback=self.parse)

(2)第二种情况,就是在下一页的审查元素中没有提供url链接,需要自己分析,在这里依然举个例子,比如搜狐新闻http://news.sohu.com/guojixinwen.shtml,该页中下一页按钮的审查元素是:

我们不能通过href来直接过得下一页的url,需要自己手动获得,那现在我们来分析

第二页的url:http://news.sohu.com/guojixinwen_5230.shtml,第三页的http://news.sohu.com/guojixinwen_5229.shtml,最后一页的http://news.sohu.com/guojixinwen_5132.shtml,由此可以分析出这一共100页的url,是http://news.sohu.com/guoneixinwen_"+i+".shtml",其中i是从5230到5132倒序排列的,也就是说通过for循环,就可以获得这100页的所有url,完整代码如下:在这里给大家加一个新的方法的使用start_request,该方法就是子定义start_urls,把所有自定义的url放到page_link中,self.make_requests_from_url方法会自动获取里面的请求

❻ 怎么样使用Python的Scrapy爬虫框架

有些人问,开发网络爬虫应该选择Nutch、Crawler4j、WebMagic、scrapy、WebCollector还是其他的?这里按照我的经验随便扯淡一下:

上面说的爬虫,基本可以分3类:

1.分布式爬虫:Nutch

2.JAVA单机爬虫:Crawler4j、WebMagic、WebCollector

3. 非JAVA单机爬虫:scrapy

第一类:分布式爬虫

爬虫使用分布式,主要是解决两个问题:

1)海量URL管理

2)网速

现在比较流行的分布式爬虫,是Apache的Nutch。但是对于大多数用户来说,Nutch是这几类爬虫里,最不好的选择,理由如下:

1)Nutch是为搜索引擎设计的爬虫,大多数用户是需要一个做精准数据爬取(精抽取)的爬虫。Nutch运行的一套流程里,有三分之二是为了搜索引擎而设计的。对精抽取没有太大的意义。也就是说,用Nutch做数据抽取,会浪费很多的时间在不必要的计算上。而且如果你试图通过对Nutch进行二次开发,来使得它适用于精抽取的业务,基本上就要破坏Nutch的框架,把Nutch改的面目全非,有修改Nutch的能力,真的不如自己重新写一个分布式爬虫框架了。

2)Nutch依赖hadoop运行,hadoop本身会消耗很多的时间。如果集群机器数量较少,爬取速度反而不如单机爬虫快。

3)Nutch虽然有一套插件机制,而且作为亮点宣传。可以看到一些开源的Nutch插件,提供精抽取的功能。但是开发过Nutch插件的人都知道,Nutch的插件系统有多蹩脚。利用反射的机制来加载和调用插件,使得程序的编写和调试都变得异常困难,更别说在上面开发一套复杂的精抽取系统了。而且Nutch并没有为精抽取提供相应的插件挂载点。Nutch的插件有只有五六个挂载点,而这五六个挂载点都是为了搜索引擎服务的,并没有为精抽取提供挂载点。大多数Nutch的精抽取插件,都是挂载在“页面解析”(parser)这个挂载点的,这个挂载点其实是为了解析链接(为后续爬取提供URL),以及为搜索引擎提供一些易抽取的网页信息(网页的meta信息、text文本)。

4)用Nutch进行爬虫的二次开发,爬虫的编写和调试所需的时间,往往是单机爬虫所需的十倍时间不止。了解Nutch源码的学习成本很高,何况是要让一个团队的人都读懂Nutch源码。调试过程中会出现除程序本身之外的各种问题(hadoop的问题、hbase的问题)。

5)很多人说Nutch2有gora,可以持久化数据到avro文件、hbase、mysql等。很多人其实理解错了,这里说的持久化数据,是指将URL信息(URL管理所需要的数据)存放到avro、hbase、mysql。并不是你要抽取的结构化数据。其实对大多数人来说,URL信息存在哪里无所谓。

6)Nutch2的版本目前并不适合开发。官方现在稳定的Nutch版本是nutch2.2.1,但是这个版本绑定了gora-0.3。如果想用hbase配合nutch(大多数人用nutch2就是为了用hbase),只能使用0.90版本左右的hbase,相应的就要将hadoop版本降到hadoop 0.2左右。而且nutch2的官方教程比较有误导作用,Nutch2的教程有两个,分别是Nutch1.x和Nutch2.x,这个Nutch2.x官网上写的是可以支持到hbase 0.94。但是实际上,这个Nutch2.x的意思是Nutch2.3之前、Nutch2.2.1之后的一个版本,这个版本在官方的SVN中不断更新。而且非常不稳定(一直在修改)。

所以,如果你不是要做搜索引擎,尽量不要选择Nutch作为爬虫。有些团队就喜欢跟风,非要选择Nutch来开发精抽取的爬虫,其实是冲着Nutch的名气(Nutch作者是Doug Cutting),当然最后的结果往往是项目延期完成。

如果你是要做搜索引擎,Nutch1.x是一个非常好的选择。Nutch1.x和solr或者es配合,就可以构成一套非常强大的搜索引擎了。如果非要用Nutch2的话,建议等到Nutch2.3发布再看。目前的Nutch2是一个非常不稳定的版本。

❼ scrapy和python有什么关系

Scrapy是Python开发的一个快速、高层次的web数据抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,可以用于数据挖掘和监测。

Scrapy吸引人的地方在于它是一个框架,任何人都可以根据需求方便的修改。它也提供了多种类型爬虫的基类,如BaseSpider、sitemap爬虫等。

Scrapy算得上是Python世界中最常用的爬虫框架了,同时它也是我掌握的几种流行语言中最好的爬虫框架,没有之一!我认为它也是最难学习的框架,同样没有之一。很多初学Scarpy的经常向我抱怨完全不清楚Scrapy该怎样入手,即使看的是中文的文档,也感到很难理解。我当初接触Scrapy时也有这样的感觉。之所以感到Scrapy难学,究其原因,是其官方文档实在太过凌乱,又缺少实用的代码例子,让人看得云里雾里,不知其所已然。虽然其文档不良,但却没有遮挡住它的光辉,它依然是Python世界中目前最好用的爬虫框架。其架构的思路、蜘蛛执行的效能,还有可扩展的能力都非常出众,再配以Python语言的简洁轻巧,使得爬虫的开发事半功倍。

相关推荐:《Python基础教程》

Scrapy的优点:

(1)提供了内置的HTTP缓存,以加速本地开发。

(2)提供了自动节演调节机制,而且具有遵守robots.txt的设置的能力。

(3)可以定义爬行深度的限制,以避免爬虫进入死循环链接。

(4)会自动保留会话。

(5)执行自动HTTP基本认证。不需要明确保存状态。

(6)可以自动填写登录表单。

(7)Scrapy有一个内置的中间件,可以自动设置请求中的引用(referrer)头。

(8)支持通过3xx响应重定向,也可以通过HTML元刷新。

(9)避免被网站使用的meta重定向困住,以检测没有JS支持的页面。

(10)默认使用CSS选择器或XPath编写解析器。

(11)可以通过Splash或任何其他技术(如Selenium)呈现JavaScript页面。

(12)拥有强大的社区支持和丰富的插件和扩展来扩展其功能。

(13)提供了通用的蜘蛛来抓取常见的格式:站点地图、CSV和XML。

(14)内置支持以多种格式(JSON、CSV、XML、JSON-lines)导出收集的数据并将其存在多个后端(FTP、S3、本地文件系统)中。

Scrapy框架原理

Scrapy Engine(引擎):负责Spider、ItemPipeline、Downloader、Scheler中间的通讯,信号、数据传递等。

Scheler(调度器):负责接收引擎发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎需要时,交还给引擎。

Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spider来处理,

Spider(爬虫):负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheler(调度器),

Item Pipeline(管道):负责处理Spider中获取到的Item,并进行进行后期处理(详细分析、过滤、存储等)的地方.

Downloader Middlewares(下载中间件):你可以当作是一个可以自定义扩展下载功能的组件。

Spider Middlewares(Spider中间件):你可以理解为是一个可以自定扩展和操作引擎和Spider中间通信的功能组件(比如进入Spider的Responses;和从Spider出去的Requests)

Scrapy各个组件介绍

·Scrapy Engine:

引擎负责控制数据流在系统中所有组件中流动,并在相应动作发生时触发事件。它也是程序的入口,可以通过scrapy指令方式在命令行启动,或普通编程方式实例化后调用start方法启动。

·调度器(Scheler)

调度器从引擎接收爬取请求(Request)并将它们入队,以便之后引擎请求它们时提供给引擎。一般来说,我们并不需要直接对调度器进行编程,它是由Scrapy主进程进行自动控制的。

·下载器(Down-loader)

下载器负责获取页面数据并提供给引擎,而后将网站的响应结果对象提供给蜘蛛(Spider)。具体点说,下载器负责处理产生最终发出的请求对象 Request 并将返回的响应生成 Response对象传递给蜘蛛。

·蜘蛛——Spiders

Spider是用户编写用于分析响应(Response)结果并从中提取Item(即获取的Item)或额外跟进的URL的类。每个Spider负责处理一个特定(或一些)网站。

·数据管道——Item Pipeline

Item Pipeline 负责处理被 Spider 提取出来的 Item。 典型的处理有清理、验证及持久化(例如,存取到数据库中)。

·下载器中间件(Downloader middle-wares)

下载器中间件是在引擎及下载器之间的特定钩子(specific hook),处理Downloader传递给引擎的Response。其提供了一个简便的机制,通过插入自定义代码来扩展Scrapy的功能。

·Spider中间件(Spider middle-wares)

Spider 中间件是在引擎及 Spider 之间的特定钩子(specific hook),处理 Spider 的输入(Response)和输出(Items及Requests)。其提供了一个简便的机制,通过插入自定义代码来扩展Scrapy的功能。

从Scrapy的系统架构可见,它将整个爬网过程进行了非常具体的细分,并接管了绝大多数复杂的工作,例如,产生请求和响应对象、控制爬虫的并发等。

❽ Python求助#SCRAPY pineline 报错

yielditem#这里不懂该怎么用,出来的是什么格式,#有的教程会returnitems,所以希望能得到指点yield生成器合理用内存,比如说数组里面有100个占100内存,而机器只有10内存那直接returnrange(100)就把内存撑爆,所有yield一个一个来即每次用1内存。fortmpinitem:#不知道这里是否写的对,#个人理解是spiderreturn出来的item是yileddict#[{a:1,aa:11},{b:2,bb:22},{}]对了一半,从报错信息来看,item有一部分是字符串类型一部分dict。你需过对tmp做个类型判断再做后缀操作相同点功能都是返回程序执行结果区别yield返回执行结果并不中断程序执行,return在返回执行结果的同时中断程序执行。小例子使用scrapy抓取网页时经常会使用for循环来抓取数据return实现items=[]forinitem['title']=items.append(item)returnitems123456123456yield实现forinitem['title']=yielditem

❾ 如何在scrapy框架下用python爬取json文件

#coding=utf-8
importsys
importscrapy
importurllib2
importre,requests,json
fromscrapy.httpimportRequest
reload(sys)
sys.setdefaultencoding('utf8')

classprojectSpider(scrapy.Spider):
name="youproject"
#allowed_domains=["youproject.com"]
start_urls=(
"http://p.3.cn/prices/mgets?&type=3652063&pid=3652063&skuIds=J_3652063",
#京东商品获取价格的链接
)
defparse(self,response):
#response.url是京东价格的例子,所请求的数据就是json,其请求后的数据为:[{"id":"J_3652063","p":"1299.00","m":"1499.00","op":"1299.00"}]
json_date=json.loads(response.body_as_unicode())
price=json_date[0]['p']#获取的就是price的价格
printprice#u'1299.00'

阅读全文

与python35scrapy例子相关的资料

热点内容
ada编译成dll 浏览:470
单片机代码跳掉 浏览:447
程序员谈薪水压价 浏览:861
荣耀10青春版支持方舟编译啊 浏览:158
最优估计pdf 浏览:826
androiddrawtext字体 浏览:669
c语言源编辑源程序编译 浏览:821
手里捏东西真的可以解压吗 浏览:265
编译原理画状态表 浏览:28
用echo命令产生下列输出 浏览:360
在内网如何访问服务器 浏览:961
java导入oracle数据库 浏览:135
坚朗内开内倒铝条算法 浏览:259
华为阅读新建文件夹 浏览:770
幻塔如何选择服务器 浏览:221
解压先把文件压到系统盘 浏览:823
access压缩和修复数据库 浏览:791
光纤交换机命令 浏览:513
白色桌放什么文件夹 浏览:296
分治算法思想 浏览:151