導航:首頁 > 源碼編譯 > FLMS演算法

FLMS演算法

發布時間:2022-06-28 02:01:05

Ⅰ LMS演算法的流程是什麼,LMS演算法的原理,均衡演算法的發展趨勢是什麼

LMS演算法是首先通過期望信號與實際信號的誤差,再通過最陡下降法,進行與誤差成一定步長的迭代運算,從而使結果更趨近於最佳值。LMS演算法的原理即使將E(e^2)視為e^2,簡化了運算。

Ⅱ MATLAB 程序詳解(關於波束形成)

你這里有兩個程序,第二個程序與第一個實質上是一樣的,區別就是信號與導向矢量的寫法有點不同,這里我就不注釋了。還有,我下面附了一段我自己的寫的程序,裡面有SIM演算法。G-S正交化演算法等。是基於圓陣形式的,你的演算法是基於線陣的,他們程序上的區別在於導向矢量的不同。我的演算法是某項目中的,保證好使。建議學習波束形成技術,注意把程序分塊,例如分成,求導向矢量;最優權值;形成波束等等。
程序如下:
4單元均勻線陣自適應波束形成圖
clear
clc
format long;
v=1;
M=4;
N=1000;%%%%%%%快拍數
f0=21*10^3;%%%%%%%%%%%信號與干擾的頻率
f1=11*10^3;
f2=15*10^3;
omiga0=2*pi*f0;%%%%%%%信號與干擾的角頻率
omiga1=2*pi*f1;
omiga2=2*pi*f2;
sita0=0.8; %信號方向
sita1=0.4; %干擾方向1
sita2=2.1; %干擾方向2
for t=1:N %%%%%%%%%%%%信號
adt(t)=sin(omiga0*t/(N*f0));
a1t(t)=sin(omiga1*t/(N*f1));
a2t(t)=sin(omiga2*t/(N*f2));
end
for i=1:M %%%%%%%%%%%%信號的導向矢量:線陣的形式
ad(i,1)=exp(j*(i-1)*pi*sin(sita0));
a1(i,1)=exp(j*(i-1)*pi*sin(sita1));
a2(i,1)=exp(j*(i-1)*pi*sin(sita2));
end
R=zeros(M,M);
for t=1:N
x=adt(t)*ad+a1t(t)*a1+a2t(t)*a2; %陣列對信號的完整響應
R=R+x*x';%信號的協方差矩陣
end
R=R/N;%%%%%%%%%協方差矩陣,所有快拍數的平均
miu=1/(ad'*inv(R)*ad);%%%%%%這個貌似是LMS演算法的公式,具體我記不太清,這里是求最優權值,根據這個公式求出,然後加權
w=miu*inv(R)*ad;
%%%%%%形成波束%%%%%%%%%%%%%%%%%%%
for sita=0:pi/100:pi
for i=1:M
x_(i,1)=exp(j*(i-1)*pi*sin(sita));
end
y(1,v)=w'*x_;%%%%%%%對信號進行加權,消除干擾
v=v+1;
end
y_max=max(y(:));%%%%%%%%%%%%%%%歸一化
y_1=y/y_max;
y_db=20*log(y_1);

sita=0:pi/100:pi;
plot(sita,y)
Xlabel(『sitaa』)
Ylabel(『天線增益db』)

4單元均勻線陣自適應波束形成
目標
clear
clc
format long;
v=1;
M=4;陣元數
N=100;
f0=21*10^3;
omiga0=2*pi*f0;
sita0=0.6;%信號方向
for t=1:N
adt(t)=sin(omiga0*t/(N*f0));
end
for i=1:M
ad(i,1)=exp(j*(i-1)*pi*sin(sita0));
end
R=zeros(4,4);
r=zeros(4,1);
for t=1:N
x=adt(t)*ad;
R=R+x*x.';
end
R=R/N;
miu=1/(ad.'*inv(R)*ad);
w=miu*inv(R)*ad;
for sita=0:pi/100:pi/2
for i=1:M
a(i,1)=exp(j*(i-1)*pi*sin(sita));
end
y(1,v)=w.'*a;
v=v+1;
end
sita=0:pi/100:pi/2;
plot(sita,y)
xlabel('sita')
ylabel('天線增益』)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%我的程序%%%%%%%%%%%%%%%
function jieshousignal
%期望信號數:1個
%干擾信號數:4個
%信噪比已知
%乾燥比已知
%方位角已知
clc;
clear all;
close all;
%//參數設置===========================================
www1=0;
www2=0;
www3=0;
% for rrr=1:16000
signal_num=1; %signal number
noise_num=5; %interference number
R0=0.6; %圓的半徑
SP=2000; %Sample number
N=8; %陣元數
snr=-10; %Signal-to-Noise
sir1=10; %Signal-to-Interference one
sir2=10; %Signal-to-Interference two
sir3=10; %Signal-to-Interf
sir4=10;
sir5=10;
%//================noise Power-to-signal Power====================
factor_noise_1=10.^(-sir1/10);
factor_noise_2=10.^(-sir2/10);
factor_noise_3=10.^(-sir3/10);
factor_noise_4=10.^(-sir4/10);
factor_noise_5=10.^(-sir5/10);
factor_noise_targe=10.^(-snr/10);

% //======================== ===============

d1=85*pi/180;%%干擾1的方位角
d2=100*pi/180;%干擾2的方位角
d3=147*pi/180;%干擾3的方位角
d4=200*pi/180;%干擾4的方位角
d5=250*pi/180;%干擾5的方位角
d6=150*pi/180;%目標的方位角

e1=15*pi/180;%%干擾1的俯仰角
e2=25*pi/180;%干擾2的俯仰角
e3=85*pi/180;%干擾3的俯仰角
e4=50*pi/180;%干擾4的俯仰角
e5=70*pi/180;%干擾5的俯仰角
e6=85*pi/180;%目標的俯仰角
% //====================目標信號==========================
t=1:1:SP;
fc=2e7;
Ts=1/(3e10);
S0=5*cos(2*pi*fc*t*Ts);%目標信號
for kk=1:N
phi_n(kk)=2*pi*(kk-1)/N;
end

%//====================操縱矢量==========================================
A=[conj(exp(j*2*pi*R0*cos(d6-phi_n)*sin(e6)));conj(exp(j*2*pi*R0*cos(d1-phi_n)*sin(e1)));conj(exp(j*2*pi*R0*cos(d2-phi_n)*sin(e2)));conj(exp(j*2*pi*R0*cos(d3-phi_n)*sin(e3)));conj(exp(j*2*pi*R0*cos(d4-phi_n)*sin(e4)));conj(exp(j*2*pi*R0*cos(d5-phi_n)*sin(e5)))]';
A1=[conj(exp(j*2*pi*R0*cos(d1-phi_n)*sin(e1)));conj(exp(j*2*pi*R0*cos(d2-phi_n)*sin(e2)));conj(exp(j*2*pi*R0*cos(d3-phi_n)*sin(e3)));conj(exp(j*2*pi*R0*cos(d4-phi_n)*sin(e4)));conj(exp(j*2*pi*R0*cos(d5-phi_n)*sin(e5)))]';

% //==========================================================Power of the interference
% // depending on the signal power and SIR
Ps1=0;
Ps2=0;
Ps3=0;
Ps4=0;
Ps5=0;
S1=zeros(1,SP);
S2=zeros(1,SP);
S3=zeros(1,SP);
S4=zeros(1,SP);
S5=zeros(1,SP);

Ps0=S0*S0'/SP; % signal power
Ps1=Ps0*factor_noise_1;
Ps2=Ps0*factor_noise_2;
Ps3=Ps0*factor_noise_3;
Ps4=Ps0*factor_noise_4;
Ps5=Ps0*factor_noise_5;
% //==========================干擾信號的隨機包絡=========================
S1=normrnd(0,sqrt(Ps1/2),1,SP)+j*normrnd(0,sqrt(Ps1/2),1,SP);
S2=normrnd(0,sqrt(Ps2/2),1,SP)+j*normrnd(0,sqrt(Ps2/2),1,SP);
S3=normrnd(0,sqrt(Ps3/2),1,SP)+j*normrnd(0,sqrt(Ps3/2),1,SP);
S4=normrnd(0,sqrt(Ps4/2),1,SP)+j*normrnd(0,sqrt(Ps4/2),1,SP);
S5=normrnd(0,sqrt(Ps5/2),1,SP)+j*normrnd(0,sqrt(Ps5/2),1,SP);
%//
S=[S0;S1;S2;S3;S4;S5];
SS1=[S1;S2;S3;S4;S5];

X=A*S;%信號加干擾
XX2=A1*SS1; %接收到的干擾
Pw_noise=sqrt(Ps0*factor_noise_targe/2);
a1=randn(N,SP);
a2=randn(N,SP);
a1=a1/norm(a1);
a2=a2/norm(a2);
W=Pw_noise*(a1+sqrt(-1)*a2);
X=X+W;

% //--------------------------SMI演算法----------------------------------------
Rd=X*S0'/SP;
R=X*X'/(SP*1);
Wc_SMI=pinv(R)*Rd./(Rd'*pinv(R)*Rd);%權向量
Wc_SMI=Wc_SMI/norm(Wc_SMI);
Y_SMI=Wc_SMI'*X; %SMI演算法恢復出來的信號

%//-------------------------------------GS演算法------------------
m=1;
for i=1:400:2000
X2(:,m)=XX2(:,i);
m=m+1;
end
a=zeros(1,8);
phi_n=zeros(1,8);
phi=0:pi/180:2*pi;
theta=0:pi/180:pi/2;
for kk=1:8
a(kk)=1;
phi_n(kk)=2*pi*(kk-1)/8;
end

x1=zeros(1,8);
x2=zeros(1,8);
x3=zeros(1,8);
x4=zeros(1,8);
x5=zeros(1,8);
x1=X2(:,1)';
x2=X2(:,2)';
x3=X2(:,3)';
x4=X2(:,4)';
x5=X2(:,5)';

Z1=x1;
Z1_inner_proct=Z1.*conj(Z1);
Z1_mode=sqrt(sum(Z1_inner_proct));
Y1=Z1./Z1_mode;

Inner_proct=sum(x2.*conj(Y1));
Z2=x2-Inner_proct*Y1;

Z2_inner_proct=sum(Z2.*conj(Z2));
Z2_mode=sqrt(Z2_inner_proct);
Y2=Z2./Z2_mode;

Inner_proct1=sum(x3.*conj(Y1));
Inner_proct2=sum(x3.*conj(Y2));
Z3=x3-Inner_proct1*Y1-Inner_proct2*Y2;

Z3_inner_proct=sum(Z3.*conj(Z3));
Z3_mode=sqrt(Z3_inner_proct);
Y3=Z3./Z3_mode;

Inner_proct1_0=sum(x4.*conj(Y1));
Inner_proct2_0=sum(x4.*conj(Y2));
Inner_proct3_0=sum(x4.*conj(Y3));
Z4=x4-Inner_proct1_0*Y1-Inner_proct2_0*Y2-Inner_proct3_0*Y3;

Z4_inner_proct=sum(Z4.*conj(Z4));
Z4_mode=sqrt(Z4_inner_proct);
Y4=Z4./Z4_mode;

Inner_proct1_1=sum(x5.*conj(Y1));
Inner_proct2_1=sum(x5.*conj(Y2));
Inner_proct3_1=sum(x5.*conj(Y3));
Inner_proct4_1=sum(x5.*conj(Y4));
Z5=x5-Inner_proct1_1*Y1-Inner_proct2_1*Y2-Inner_proct3_1*Y3-Inner_proct4_1*Y4;

Z5_inner_proct=sum(Z5.*conj(Z5));
Z5_mode=sqrt(Z5_inner_proct);
Y5=Z5./Z5_mode;
%Y1
%Y2
%Y3
%Y4
%Y5
w0=zeros(1,8);
w=zeros(1,8);
for mm=1:8;
w0(mm)=exp(-j*2*pi*R0*cos(d6-phi_n(mm))*sin(e6));
end
dd1=sum(w0.*conj(Y1))*Y1;
dd2=sum(w0.*conj(Y2))*Y2;
dd3=sum(w0.*conj(Y3))*Y3;
dd4=sum(w0.*conj(Y4))*Y4;
dd5=sum(w0.*conj(Y5))*Y5;
w=w0-dd1-dd2-dd3-dd4-dd5;
Wc_GS=w;
Wc_GS=Wc_GS/(norm(Wc_GS));
Y_GS=Wc_GS*X; %GS演算法恢復出來的圖像

%//----------------------------------MMSE演算法-----------------------
Rd=X*S0'/SP;
R=X*X'/(SP*1);
Wc_MMSE=pinv(R)*Rd;
Wc_MMSE=Wc_MMSE/norm(Wc_MMSE);
Y_MMSE=Wc_MMSE'*X; %MMSE演算法恢復出來的信號
S0=S0/norm(S0);
Y_GS=Y_GS/norm(Y_GS);
Y_SMI=Y_SMI/norm(Y_SMI);
Y_MMSE=Y_MMSE/norm(Y_MMSE);

% figure(1)
% plot(real(S0));
% title('原始信號');
% xlabel('采樣快拍數');
% ylabel('信號幅度');
% figure(2)
% plot(real(Y_SMI));
% title('運用SMI演算法處理出的信號');
% xlabel('采樣快拍數');
% ylabel('信號幅度');
% figure(3)
% plot(real(Y_GS));
% title('運用G-S演算法處理出的信號');
% xlabel('采樣快拍數');
% ylabel('信號幅度');
% figure(4)
% plot(real(Y_MMSE));
% for i=1:SP
% ss(i)=abs(S0(i)-Y_SMI(i))^2;
% end
% q_1=mean(ss);
% for i=1:SP
% ss1(i)=abs(S0(i)-Y_GS(i))^2;
% end
% q_2=mean(ss1);
% for i=1:SP
% ss2(i)=abs(S0(i)-Y_MMSE(i))^2;
% end
% q_3=mean(ss2);
%
% www1=www1+q_1;
% www2=www2+q_2;
% www3=www3+q_3;
% end
% www1/16000
% www2/16000
% www3/16000

phi=0:pi/180:2*pi;
theta=0:pi/180:pi/2;

%
% % //------------------------ 形成波束-----------------------------------------
F_mmse=zeros(91,361);
F_smi=zeros(91,361);
F_gs=zeros(91,361);
for mm=1:91
for nn=1:361
p1=sin(theta(mm));
p2=cos(phi(nn));
p3=sin(phi(nn));

q1=sin(e6);
q2=cos(d6);
q3=sin(d6);
for hh=1:8
w1=cos(phi_n(hh));
w2=sin(phi_n(hh));
zz1=q2*w1+q3*w2;
zz2=p2*w1+p3*w2;
zz=zz2*p1-zz1*q1;
F_mmse(mm,nn)= F_mmse(mm,nn)+conj(Wc_MMSE(hh))*(exp(j*2*pi*R0*(zz2*p1)));
F_smi(mm,nn)=F_smi(mm,nn)+conj(Wc_SMI(hh))*(exp(j*2*pi*R0*(zz2*p1)));
F_gs(mm,nn)=F_gs(mm,nn)+conj((Wc_GS(hh))')*(exp(j*2*pi*R0*(zz2*p1)));

end
end
end

F_MMSE=abs(F_mmse);
F_SMI=abs(F_smi);
F_GS=abs(F_gs);
figure(5)
mesh(20*log10(F_MMSE))
figure(6)
mesh(20*log10(F_SMI))
title('SMI演算法波束形成圖');
xlabel('方位角');
ylabel('俯仰角');
zlabel('幅度/dB');
figure(7)
mesh(20*log10(F_GS))
title('G-S演算法波束形成圖');
xlabel('方位角');
ylabel('俯仰角');
zlabel('幅度/dB');

Ⅲ 如何確定lms演算法的值,值與演算法收斂的關系如何

LMS演算法
是首先通過期望信號與實際信號的誤差,再通過最陡下降法,進行與誤差成一定步長的迭代運算,從而使結果更趨近於最佳值。LMS演算法的原理即使將E(e^2)視為e^2,簡化了運算。

Ⅳ 什麼是LMS演算法,全稱是什麼

1959年,Widrow和Hof提出的最小均方(LMS )演算法對自適應技術的發展起了極
大的作用。由於LMS演算法簡單和易於實現,它至今仍被廣泛應用。對LMS演算法的性能
和改進演算法已經做了相當多的研究,並且至今仍是一個重要的研究課題。進一步的研究
工作涉及這種演算法在非平穩、相關輸入時的性能研究。當輸入相關矩陣的特徵值分散時,
LMS演算法的收斂性變差,研究的另一個方面在於如何解決步長大小與失調量之間的矛
盾。
全稱 Least mean square

Ⅳ lms演算法是什麼

LMS(Least mean square)演算法,即最小均方誤差演算法。

lms演算法由美國斯坦福大學的B Widrow和M E Hoff於1960年在研究自適應理論時提出,由於其容易實現而很快得到了廣泛應用,成為自適應濾波的標准演算法。在濾波器優化設計中,採用某種最小代價函數或者某個性能指標來衡量濾波器的好壞,而最常用的指標就是均方誤差,也把這種衡量濾波器好壞的方法叫做均方誤差准則。

lms演算法的特點

根據小均方誤差准則以及均方誤差曲面,自然的我們會想到沿每一時刻均方誤差 的陡下降在權向量面上的投影方向更新,也就是通過目標函數的反梯度向量來反 復迭代更新。由於均方誤差性能曲面只有一個唯一的極小值,只要收斂步長選擇恰當, 不管初始權向量在哪,後都可以收斂到誤差曲面的小點,或者是在它的一個鄰域內。

Ⅵ 什麼是最小均方(LMS)演算法

全稱 Least mean square 演算法。中文是最小均方演算法。
感知器和自適應線性元件在歷史上幾乎是同時提出的,並且兩者在對權值的調整的演算法非常相似。它們都是基於糾錯學習規則的學習演算法。感知器演算法存在如下問題:不能推廣到一般的前向網路中;函數不是線性可分時,得不出任何結果。而由美國斯坦福大學的Widrow和Hoff在研究自適應理論時提出的LMS演算法,由於其容易實現而很快得到了廣泛應用,成為自適應濾波的標准演算法。
LMS演算法步驟:
1,、設置變數和參量:
X(n)為輸入向量,或稱為訓練樣本
W(n)為權值向量
b(n)為偏差
d(n)為期望輸出
y(n)為實際輸出
η為學習速率
n為迭代次數
2、初始化,賦給w(0)各一個較小的隨機非零值,令n=0
3、對於一組輸入樣本x(n)和對應的期望輸出d,計算
e(n)=d(n)-X^T(n)W(n)
W(n+1)=W(n)+ηX(n)e(n)
4、判斷是否滿足條件,若滿足演算法結束,若否n增加1,轉入第3步繼續執行。

Ⅶ LMS演算法與最陡下降法有何不同

最陡下降法在迭代過程中與輸入信號無關,不具有有對輸入信號統計特性變化的自適應性,最陡下降法的互相關向量P和自相關矩陣R都是確定量,所以根據最陡下降法迭代式所得到的權向量w(n)也是確定的向量序列。所以,最陡下降法不是自適應演算法。
而LMS演算法中的u(n)和e(n)都是隨機過程,得到的w(n)也是隨機過程向量。LMS演算法是自適應演算法。

Ⅷ LMS演算法的簡介

全稱 Least mean square 演算法。中文是最小均方演算法。
感知器和自適應線性元件在歷史上幾乎是同時提出的,並且兩者在對權值的調整的演算法非常相似。它們都是基於糾錯學習規則的學習演算法。感知器演算法存在如下問題:不能推廣到一般的前向網路中;函數不是線性可分時,得不出任何結果。而由美國斯坦福大學的Widrow和Hoff在研究自適應理論時提出的LMS演算法,由於其容易實現而很快得到了廣泛應用,成為自適應濾波的標准演算法。

Ⅸ LMS演算法的演算法

LMS演算法步驟:
1,、設置變數和參量:
X(n)為輸入向量,或稱為訓練樣本
W(n)為權值向量
e(n)為偏差
d(n)為期望輸出
y(n)為實際輸出
η為學習速率
n為迭代次數
2、初始化,賦給w(0)各一個較小的隨機非零值,令n=0
3、對於一組輸入樣本x(n)和對應的期望輸出d,計算
e(n)=d(n)-X(n)
W(n+1)=W(n)+ηX(n)e(n)
4、判斷是否滿足條件,若滿足演算法結束,若否n增加1,轉入第3步繼續執行。

Ⅹ 什麼是LMS演算法

LMS演算法是指 Least mean square 演算法的意思。
全稱 Least mean square 演算法。是最小均方演算法中文。
感知器和自適應線性元件在歷史上幾乎是同時提出的,並且兩者在對權值的調整的演算法非常相似。它們都是基於糾錯學習規則的學習演算法。感知器演算法存在如下問題:不能推廣到一般的前向網路中;函數不是線性可分時,得不出任何結果。而由美國斯坦福大學的Widrow和Hopf在研究自適應理論時提出的LMS演算法,由於其容易實現而很快得到了廣泛應用,成為自適應濾波的標准演算法。

閱讀全文

與FLMS演算法相關的資料

熱點內容
logback壓縮 瀏覽:888
冰箱壓縮機可以用氣割嗎 瀏覽:531
菜鳥如何加密商品信息 瀏覽:315
程序員那麼可愛小說結局 瀏覽:862
zenity命令 瀏覽:564
監禁風暴哪個app有 瀏覽:865
程序員的愛心是什麼 瀏覽:591
java中對字元串排序 瀏覽:290
單片機用數模轉換生成三角波 瀏覽:634
外網怎麼登陸伺服器地址 瀏覽:134
什麼人要懂編譯原理 瀏覽:150
源碼改單 瀏覽:713
pdfzip 瀏覽:876
壓縮空氣25兆帕會變成液體嗎 瀏覽:56
linux測試伺服器性能 瀏覽:956
dlp硬碟加密 瀏覽:365
應用加密裡面打不開 瀏覽:861
基於單片機的超聲波測距儀的設計 瀏覽:745
xp自動備份指定文件夾 瀏覽:664
我的世界伺服器如何讓世界平坦 瀏覽:173