❶ 指紋的識別原理
指紋識別
讀取指紋圖象、提取特徵、保存數據和比對。在一開始,通過指紋讀取設備讀取到人體指紋的圖象,取到指紋圖象之後,要對原始圖象進行初步的處理,使之更清晰。接下來,指紋辨識軟體建立指紋的數字表示——特徵數據,一種單方向的轉換,可以從指紋轉換成特徵數據但不能從特徵數據轉換成為指紋,而兩枚不同的指紋不會產生相同的特徵數據。
有的演算法把節點和方向信息組合產生了更多的數據,這些方向信息表明了各個節點之間的關系,也有的演算法還處理整幅指紋圖像。總之,這些數據,通常稱為模板,保存為1K大小的記錄。無論它們是怎樣組成的,至今仍然沒有一種模板的標准,也沒有一種公布的抽象演算法,而是各個廠商自行其是。最後,通過計算機模糊比較的方法,把兩個指紋的模板進行比較,計算出它們的相似程度,最終得到兩個指紋的匹配結果。指紋其實是比較復雜的。
與人工處理不同,許多生物識別技術公司並不直接存儲指紋的圖象。多年來在各個公司及其研究機構產生了許多數字化的演算法(美國有關法律認為,指紋圖象屬於個人隱私,因此不能直接存儲指紋圖象)。
指紋識別演算法最終都歸結為在指紋圖象上找到並比對指紋的特徵。指紋的特徵我們定義了指紋的兩類特徵來進行指紋的驗證:總體特徵和局部特徵。總體特徵是指那些用人眼直接就可以觀察到的特徵,包括:基本紋路圖案環型(loop),弓型(arch),螺旋型(whorl)。其他的指紋圖案都基於這三種基本圖案。僅僅依靠圖案類型來分辨指紋是遠遠不夠的,這只是一個粗略的分類,但通過分類使得在大資料庫中搜尋指紋更為方便。 (PatternArea)模式區是指指紋上包括了總體特徵的區域,即從模式區就能夠分辨出指紋是屬於那一種類型的。有的指紋識別演算法只使用模式區的數據。Aetex的指紋識別演算法使用了所取得的完整指紋而不僅僅是模式區進行分析和識別。
核心點(CorePoint)核心點位於指紋紋路的漸進中心,它用於讀取指紋和比對指紋時的參考點。
三角點(Delta)三角點位於從核心點開始的第一個分叉點或者斷點、或者兩條紋路會聚處、孤立點、折轉處,或者指向這些奇異點。三角點提供了指紋紋路的計數和跟蹤的開始之處。
式樣線(TypeLines)式樣線是在指包圍模式區的紋路線開始平行的地方所出現的交叉紋路,式樣線通常很短就中斷了,但它的外側線開始連續延伸。 (RidgeCount)指模式區內指紋紋路的數量。在計算指紋的紋數時,一般先在連接核心點和三角點,這條連線與指紋紋路相交的數量即可認為是指紋的紋數。局部特徵局部特徵是指指紋上的節點。兩枚指紋經常會具有相同的總體特徵,但它們的局部特徵--節點,卻不可能完全相同節點(MinutiaPoints)指紋紋路並不是連續的,平滑筆直的,而是經常出現中斷、分叉或打折。這些斷點、分叉點和轉折點就稱為節點。就是這些節點提供了指紋唯一性的確認節點特性
1.分類-節點有以下幾種類型,最典型的是終結點和分叉點
A.終結點(Ending)--一條紋路在此終結。
B.分叉點(Bifurcation)--一條紋路在此分開成為兩條或更多的紋路。
C.分歧點(RidgeDivergence)--兩條平行的紋路在此分開。
D.孤立點(DotorIsland)--一條特別短的紋路,以至於成為一點
E.環點(Enclosure)--一條紋路分開成為兩條之後,立即有合並成為一條,這樣形成的一個小環稱為環點
F.短紋(ShortRidge)--一端較短但不至於成為一點的紋路,
2.方向(Orientation)--節點可以朝著一定的方向。
3.曲率(Curvature)--描述紋路方向改變的速度。
4.位置(Position)--節點的位置通過(x,y)坐標來描述,可以是絕對的,也可以是相對於三角點或特徵點的。 從「指紋」到「指紋術」的研究,經歷了漫長的過程。指紋技術形成之後,又經過了從人工識別技術到自動化識別技術的發展轉變。隨著計算機圖像處理技術和信息技術的發展,指紋識別技術逐漸進入IT技術領域,與眾多計算機信息系統結合在一起,廣泛應用起來。
❷ 指紋識別技術的演算法
於指紋所具有的唯一性和不變性,以及指紋識別技術所具有的可行性和實用性,指紋識別成為目前最流行、最方便、最可靠的身份認證技術之一。指紋圖像數據量大,通過直接比對指紋圖像的方法來識別指紋是不可取的,應該先對指紋圖像進行預處理,然後提取出指紋的特徵數據,通過特徵數據的比對來實現自動指紋識別。指紋圖像預處理作為指紋自動識別過程的第一個環節,它的好壞直接影響著自動識別系統的效果。預處理通常包括濾波、方向圖的求取、二值化、細化等幾個步驟。
本文首先闡述了生物特徵識別技術的基本概念,對自動指紋識別系統的組成也作了簡要的介紹。然後對目前指紋圖像預處理的一些常用演算法進行了介紹,針對指紋圖像的特徵,採用了基於Gabor濾波器的指紋預處理方法,它為特徵提取和比對奠定了良好的基礎。
本文所提到的演算法已在PC機上用Visual C++6.0編程實現,實驗結果表明,這種方法能獲得令人滿意的指紋圖像預處理效果。
❸ 指紋識別演算法或者相關的圖片像素的演算法
您好,目前指紋識別系統大多都採用特徵點匹配,識別系統將指紋圖像經過去噪處理後,把指紋圖像紋理細化,然後根據指紋的特徵,找到指紋的特徵點進行識別,它的識別速度快,能夠滿足一對多個指紋的識別需要。但是對於殘缺、污損指紋,在進行特徵點提取的過程中只能提取到部分特徵點,不能達到指紋識別所需的特徵點數量,不能完成識別。同時研究發現在指紋圖像的某些局部圖像中,變化不明顯或是有規律變化的,所以根據這些局部圖像的不變和有規律變化提出了基於圖像匹配的指紋局部取像輔助識別系統。因此在原有指紋系統的基礎上,增加了基於garbor方向濾波的指紋識別紋理匹配的演算法,作為指紋識別系統的一種有效補充,提高了識別率和降低誤識率。通過對資料庫BVC2004中100張不同的指紋圖像測試後,系統運行性能穩定可靠,該系統既可以用於有關部門對殘缺、污損指紋的識別,同時也可以滿足那些強調安全性的使用者的更高使用要求。
❹ 指紋識別原理
指紋識別核心的准確、高效的採集指紋分析。指紋識別採集技術的發展大致分為三個方式:光學識別、電容感測器、生物射頻。
1、光學識別
光學識別是較早的指紋識別技術。基於光學發射裝置發射的光線,射到手指上再反射回機器以獲取數據,並對比資料庫看是否一致。光學識別只能到達皮膚的表皮層,而不能到達真皮層,而且受手指表面是否干凈影響較大。
2、電容感測器
電容感測器識別是利用一定間隔的安裝的兩個電容,利用指紋的凹凸,在手指滑過指紋檢測儀器時接通或斷開兩個電容的電流以檢測指紋資料。電容感測器對手指的干凈要求還是比較高,而且感測器表面使用硅材料,比較容易損壞。以技術面來看,電容式指紋辨識技術的供應為Authentec、Validity、FingerPrintCardsAB(FPC)等,Authentec被蘋果買下,Validity也被Synaptics收購。電容式指紋感測器也是現在應用最普遍的技術。
3、生物射頻
射頻感測器通過感測器發射微量的射頻信號,穿透手指的表皮層獲取里層的紋路以獲取信息。這種方法對手指的干凈程度要求較低。射頻是目前較新的技術方案,射頻也是電容方式的一種,但受限於專利問題。射頻式是未來發展方向。
指紋識別採集方式
不管採用什麼採集技術,從用戶角度用到的就兩種錄入方式:按壓式與滑動式。
1、滑動式
將手指從感測器上劃過,系統就能獲得整個手指的指紋。手指按壓上去時,無法一次性採集到完整圖像。在採集時需要手指劃過採集表面,對手指劃過時採集到的每一塊指紋圖像進行快照,這些快照再進行拼接,才能形成完整的指紋圖像。
滑動式的優點是成本低、易集成,可採集大面積的圖像,應用傳統的特徵點演算法,但缺點是需要客戶有一個連貫規范動作採集圖像,體驗效果比較差,在之前的應用推廣中不太成功。
2、按壓式
手指平放在設備上以便獲取指紋圖像。一般為了獲得整個手指的指紋,必須使用比手指更大的感測器,整個手指同時按壓在感測器之上。
按壓式的優點是客戶體驗好,只用一次按壓就可以採集圖像,與客戶在手機應用的操作習慣匹配,無須教育客戶。缺點是:成本高,集成難度大,一次採集圖像面積相對較小,沒有足夠的特徵點,需要用復雜的圖像比對演算法進行識別。
很明顯,在用戶角度來說,按壓式最簡單、最方便。以後越來越多的移動設備都將採用按壓式指紋識別方案。
❺ 中國 國內 有自己獨立開發的指紋產品, 指紋演算法的公司有嗎急!!!!!指紋演算法要求精度高。
產品系列:AA-M3-P1一體化指紋模塊
AA-M3-91是長沙雙安信息科技推出的一體化指紋模塊。它具有體積小、低功耗,高精度的特點。可用於各種需要進行指紋身份認證的產品,尤其是需要使用電池供電的產品。
性能參數:
1.採用FPC1011取指儀。解析度363dpi,取指面積10.64×14.00mm。
2.5個安全等級,用戶可自行調整。
3.可存儲43枚指紋。
4.採用當今世界上最先進的指紋演算法,指紋圖像質量高,且對干濕手指有一定的調節功能。
5.FAR(1%~0.00001%間可調)
6.FRR<1%。
7.處理速度快,50枚指紋,驗證響應時間≤1秒。
8.取指方向±45°
9.工作電流<25mA。
10.工作電壓3.3V。
11.待機電流2uA.。
12.工作溫度-20℃~60℃。
13.體積:模塊板尺寸36mm×20mm。一體化外殼尺寸41mm×31mm×9mm。
14.內嵌完整的指紋識別演算法,二次開發介面指令簡單,功能強大,支持多種方式的指紋注冊、刪除、比對模式。
公司網址:www.a2-tec.com
❻ 開發一個指紋識別系統要採用什麼方法
指紋識別技術通過分析指紋的局部特徵,從中抽取詳盡的特徵點,從而可靠地確認個身份。指紋識別的優點指紋作為人體獨一無二的特徵,它的復雜度可以提供用於鑒別的足夠特徵,具有極高的安全性。相對於其他身份認證技術,指紋識別是一種更為理想的身份認證技術,指紋識別不僅具有許多獨到的信息安全優點,更重要的是具有很高的實用性、可行性,已經廣泛應用於金融、電子商務以及安全性能要求教高的行業中。
目前多數指紋識別系統是將指紋圖象採集到計算機中,利用計算機進行識別。外一些公司生產的獨立指紋識別系統,價格比較高昂。些都限制了指紋識別技術的普及。因此,研究開發快速、識別率高、廉價的獨立指紋識別系統具有很大的市場前景和重要的科學研究價值。
本文提出了一種新型基於DSP的指紋識別系統,硬體上利用DSP的高速處理能力,構建高速的數據處理平台,軟體上考DSP和硬體邏輯的處理特點,對傳統的指紋演算法進行改進,滿足實時性和可靠性要求。
2 硬體系統結構
系統的原理框圖如圖(1)所示:
圖(1)系統結構框圖
本系統整體上可以分為圖像採集模塊、圖像處理及識別模塊以及輸出模塊三部分組成。
2.1 圖像採集模塊
圖像採集模塊中,由於指紋識別系統中並不需要實時觀察圖像,所以對感測器要求不是很高,一般的黑白數字CMOS感測器都能滿足要求。本系統中採用了一款300萬象素的高清晰度黑白感測器作為圖像獲取器件,非常適合作為指紋圖像感測器使用。主要考慮到CMOS器件成本低、解析度高、可靠性好的優點。缺點為當手指汗液多或乾裂時成像質量可能變差。在圖像識別過程中,採用了基於GABOR的增強演算法,基本上可以克服由此造成的影響。
2.2 圖像處理及識別模塊
圖像處理及識別模塊的結構關繫到系統的性能的總體水平,採用FPGA+DSP的體系結構有利於構建高效的數據處理流程和方便處理任務的分配,提高系統的並行程度和資源利用率。系統中的SRAM、SDRAM、FLASH直接連到DSP上供其使用:FLASH用於存放程序和一些固定的表格數據;SDRAM作為DSP的系統內存,用於系統程序的運行;SRAM是高速的數據存儲區,用於存放程序運行是產生的臨時變數。而DDR SDRAM是專門用於存放採集到的指紋數據以及預處理過程中計算得到的象素點梯度數據等一些大容量的數據塊,直接連接到FPGA,是系統中最高速的內存區域。FPGA除了作為DSP處理器的擴展匯流排介面外,還分擔了部分數據處理任務,因為僅僅靠一塊DSP是不能勝任所有的運算和控制任務的,指紋數據處理時,經常會遇到一些繁瑣的加減運算和比邏輯運算,通常這部分都是由FPGA代為處理的,考慮到指紋處理演算法的特殊性,同時還要兼顧實現DDR控制功能。
由於指紋識別過程中數學運算量大,因此程序設計不可避免的需要較大的存儲空間,為了提高整體性能,需要把繁重的運算任務交給DSP處理,而圖像採集部分則要盡可能少的佔用DSP時間。另外,利用圖像採集的間隙,或是圖像採集的同時,由硬體完成一部分簡單而繁瑣的運算可以分擔DSP的處理任務,提高處理的並行度,滿足對實時性的要求。本系統採用了TMS320VC5402,其運算速度快,並且具有很高的性價比。系統中採集到的8bits灰度指紋圖像,每個像素佔用一個位元組,圖像尺寸為512×512個像素大小,存儲一幀圖像需要256k位元組存貯空間。DSP單元是整個指紋處理系統的核心,負責對指紋進行實時處理。
2.3 輸出模塊
作為獨立的指紋識別系統,經過系統識別的數據可以通過LCD直接顯示出來。系統在設計時,也可以將系統作為終端使用,即通過FPGA擴展出乙太網介面,作為需要通過網路傳送指紋庫數據的大型指紋識別系統終端。
3 指紋識別演算法
指紋識別演算法是指紋識別的核心,本系統中採用的指紋識別演算法流程如圖(2)所示。
圖(2)指紋識別演算法流程
圖像增強是指紋圖像預處理需要解決的核心問題,指紋圖像增強的主要目的是為了消除雜訊,改善圖像質量,便於特徵提取。由於指紋紋理由相間的脊線和谷線組成。這些紋理蘊涵了大量的信息,如紋理方向、紋理密度等等。在指紋圖像的不同區域,這樣的信息是不同的。指紋圖像增強演算法就是利用圖像信息的區域性差異來實現的。傳統的指紋圖像增強就是利用圖像的紋理方向信息,構造方向濾波器模板來實現濾波的。濾波器構造的簡單性和指紋圖像復雜性的矛盾限制了其作用的有效性。本系統中採用的是參考了指紋圖像紋理頻率信息,並且以GABOR變換這個能夠同時對圖像局部結構的方向和空域頻率進行解析的最優濾波器作為濾波器的模板,因而極大的改善了增強演算法的效果。
3.1 脊線方向
除奇異區外,指紋圖像在一個足夠小的區域內,紋理近似於相互平行的直線,這就是指紋圖像的方向性特徵。方向性特徵是指紋圖像中最為明顯的特徵之一,它以簡化的形式直觀的反映指紋圖像的基本形態特徵,因而被廣泛應用於指紋圖像的分類、增強、特徵提取等方面。
提取脊線方向方法為:
⑴ 將指紋圖像分割成足夠小的子塊,以滿足塊中紋理近似平行的條件。
3.2 脊線頻率
指紋紋理除了具有穩定的方向性特徵外,還具有穩定的頻率性特點。在指紋圖像的一個局部區域內,脊線和谷線的紋理走向平行,同時沿脊谷方向的灰度分布近似於正弦包絡。
脊線頻率被定義為兩條脊線之間間距的倒數。通過定位該包絡中極大、極小值點,就能得到相應的脊線間距和谷線間距,進而計算出脊線頻率。
3.3 GABOR濾波器
GABOR變換由於具有最佳時域和頻域連接解析度的特點,能夠同時對圖像局部結構的方向和空域頻率進行解析,可以很好地兼顧指紋圖像的脊線方向和脊線頻率信息。
本系統中採用GABOR濾波器函數的實部作為模板,以與子塊紋線方向垂直的方向作為濾波器方向,以脊線頻率作為濾波器頻率來構建濾波器。濾波過程如下式所示:
其中, 為原始圖像灰度, 是GABOR濾波後的圖像灰度,W為濾波器模板大小,S為模板系數和, 為子塊的域方向值。需要注意的是GABOR濾波器中的 與指紋文理方向垂直。對 和 的取值需要進行折衷,取值越大,則濾波器的抗噪性能越好,但也容易聲成假的脊線。這里取 和 。
3.4 指紋匹配
本系統中指紋匹配採用基於特徵點集合匹配的校準演算法,該演算法多為簡單的比較邏輯和加減運算,不需要用到DSP處理單元。
4 系統處理流程
整個系統的處理的過程分為四個步驟:
⑴ 從圖像感測器輸出的指紋圖像首先送到FPGA緩沖,同時運用設計好的預處理模塊對數據進行處理,得到各像素點的梯度值以及子塊中極大值點的坐標,所有這些數據連同原始數據以突發模式存入DDR SDRAM中;
⑵ DSP通過FPGA從DDR SDRAM中讀取所有相關數據,計算出脊線方向和脊線頻率,然後利用GABOR對原始數據進行濾波,處理後的圖像數據再通過FPGA存入DDR SDRAM中,因此在DDR SDRAM的輸入輸出端都需要進行緩沖;
⑶ 根據DSP處理的指令要求,從DDR SDRAM中讀出濾波後的數據,由FPGA內部的比較邏輯提取出指紋圖像中每行(每列)中的極大值點,送到DSP進行進一步處理,完成指紋圖像脊線提取;
⑷ 由DSP完成匹配識別演算法,並輸出處理結果。
5 結論
以上設計方案綜合考慮了各方面因素,兼顧了DSP處理器和FPGA協處理器的性能狀況和資源需求來分配任務,而且在數據採集的同時完成了指紋方向和頻率提取的部分運算,減少了內存操作的次數,採用的根據系統特點優化的基於GABOR的增強演算法,提高了系統的實時性,滿足應用要求。
❼ 指紋識別有哪幾種
指紋的特徵我們定義了指紋的兩類特徵來進行指紋的驗證:總體特徵和局部特徵。總體特徵是指那些用人眼直接就可以觀察到的特徵,包括: 基本紋路圖案 環型(loop), 弓型(arch), 螺旋型(whorl)。其他的指紋圖案都基於這三種基本圖案。僅僅依靠圖案類型來分辨指紋是遠遠不夠的,這只是一個粗略的分類,但通過分類使得在大資料庫中搜尋指紋更為方便。 模式區(Pattern Area)模式區是指指紋上包括了總體特徵的區域,即從模式區就能夠分辨出指紋是屬於那一種類型的。有的指紋識別演算法只使用模式區的數據。 Aetex 的指紋識別演算法使用了所取得的完整指紋而不僅僅是模式區進行分析和識別。 核心點(Core Point)核心點位於指紋紋路的漸進中心,它用於讀取指紋和比對指紋時的參考點。 三角點(Delta)三角點位於從核心點開始的第一個分叉點或者斷點、或者兩條紋路會聚處、孤立點、折轉處,或者指向這些奇異點。三角點提供了指紋紋路的計數和跟蹤的開始之處。 式樣線(Type Lines)式樣線是在指包圍模式區的紋路線開始平行的地方所出現的交叉紋路,式樣線通常很短就中斷了,但它的外側線開始連續延伸。 紋數(Ridge Count)指模式區內指紋紋路的數量。在計算指紋的紋數時,一般先在連接核心點和三角點,這條連線與指紋紋路相交的數量即可認為是指紋的紋數。 局部特徵 局部特徵是指指紋上的節點。兩枚指紋經常會具有相同的總體特徵,但它們的局部特徵--節點,卻不可能完全相同 節點(Minutia Points)指紋紋路並不是連續的,平滑筆直的,而是經常出現中斷、分叉或打折。這些斷點、分叉點和轉折點就稱為"節點"。就是這些節點提供了指紋唯一性的確認信息。 指紋上的節點有四種不同特性: 1. 分類 - 節點有以下幾種類型,最典型的是終結點和分叉點 A. 終結點(Ending) -- 一條紋路在此終結。 B. 分叉點(Bifurcation) -- 一條紋路在此分開成為兩條或更多的紋路。 C. 分歧點(Ridge Divergence) -- 兩條平行的紋路在此分開。 D. 孤立點(Dot or Island) -- 一條特別短的紋路,以至於成為一點 E. 環點(Enclosure) -- 一條紋路分開成為兩條之後,立即有合並成為一條,這樣形成的一個小環稱為環點 F. 短紋(Short Ridge) -- 一端較短但不至於成為一點的紋路, 2. 方向(Orientation) -- 節點可以朝著一定的方向。 3. 曲率(Curvature) -- 描述紋路方向改變的速度。 4. 位置(Position) -- 節點的位置通過(x,y)坐標來描述,可以是絕對的,也可以是相對於三角點或特徵點 電感式識別---以前用的比較多,現在有些公司也還在用,但穩定性一般。 光學採集識別,穩定性高,主要就這兩種 最笨的一種是往紙上按一個人工識別!
❽ 指紋識別演算法都有哪些,最先進的是什麼演算法
現在國內外大都採用基於細節特徵點的指紋識別技術,即採用基於圖像處理的指紋識別演算法,有兩種比較有代表性的。一種是基於方向濾波增強,並在指紋細化圖上提取特徵點的演算法,另一種是直接從指紋灰度圖上提取特徵點的演算法。難題在於有些演算法會由於指紋圖像的噪音、皮膚彈性引起的非線性形變等多方面因素,導致在識別過程中出現誤差,影響識別率等[1-2]
指紋演算法存在的難題與方向
指紋圖像預處理:預處理的目的是改善輸入指紋圖像的質量,以提高特徵提取的准確性。本文採用灰度分割法對指紋圖像進行分割。利用中值濾波去噪。通過自適應二值化的方法處理指紋圖像,最後再對圖像進行細化處理並去除毛刺,斷裂等干擾。
指紋圖像特徵提取:對指紋圖像的特徵點進行提取。由於經過預處理後的細化圖像上存在大量的偽特徵點,這些偽特徵點的存在,不但使匹配的速度大大降低,還使指紋識別性能急劇下降,造成識別系統的誤拒率和誤識率的上升。因此在進行指紋匹配之前,應盡可能將偽特徵點去除,針對提取出的指紋細節特徵點含有大量的偽特徵點這一問題,提出了一種邊緣信息判別法,有效地去除了邊界偽特徵點,再根據脊線結構特性去除其毛刺和短脊等偽特徵點,明顯的減少了偽特徵點。
指紋匹配:對指紋圖像的匹配演算法進行研究。特徵匹配是識別系統的關鍵環節,匹配演算法的好壞直接影響識別的性能、速度和效率。為了克服指紋圖像非線性形變的影響,採用基於結構特徵的點匹配演算法,對校準後的點集進行匹配,匹配的特徵點個數在兩個點集中所佔比例大約百分之六十五的范圍內就可判為匹配成功。
❾ 指紋識別技術是基於哪些原理
指紋其實是比較復雜的。與人工處理不同,許多生物識別技術公司並不直接存儲指紋的圖像。多年來在各個公司及其研究機構產生了許多數字化的演算法(美國有關法律認為,指紋圖像屬於個人隱私,因此不能直接存儲指紋圖像)。但指紋識別演算法最終都歸結為在指紋圖像上找到並比對指紋的特徵。
指紋的特徵
我們定義了指紋的兩類特徵來進行指紋的驗證:總體特徵和局部特徵。總體特徵是指那些用人眼直接就可以觀察到的特徵,包括:
基本紋路圖案
環型(loop),
弓型(arch),
螺旋型(whorl)。其他的指紋圖案都基於這三種基本圖案。僅僅依靠圖案類型來分辨指紋是遠遠不夠的,這只是一個粗略的分類,但通過分類使得在大資料庫中搜尋指紋更為方便。
模式區(Pattern
Area)模式區是指指紋上包括了總體特徵的區域,即從模式區就能夠分辨出指紋是屬於那一種類型的。有的指紋識別演算法只使用模式區的數據。
Aetex
的指紋識別演算法使用了所取得的完整指紋而不僅僅是模式區進行分析和識別。
核心點(Core
Point)核心點位於指紋紋路的漸進中心,它用於讀取指紋和比對指紋時的參考點。
三角點(Delta)三角點位於從核心點開始的第一個分叉點或者斷點、或者兩條紋路會聚處、孤立點、折轉處,或者指向這些奇異點。三角點提供了指紋紋路的計數和跟蹤的開始之處。
式樣線(Type
Lines)式樣線是在指包圍模式區的紋路線開始平行的地方所出現的交叉紋路,式樣線通常很短就中斷了,但它的外側線開始連續延伸。
紋數(Ridge
Count)指模式區內指紋紋路的數量。在計算指紋的紋數時,一般先在連接核心點和三角點,這條連線與指紋紋路相交的數量即可認為是指紋的紋數。
局部特徵
局部特徵是指指紋上的節點。兩枚指紋經常會具有相同的總體特徵,但它們的局部特徵--節點,卻不可能完全相同
節點(Minutia
Points)指紋紋路並不是連續的,平滑筆直的,而是經常出現中斷、分叉或打折。這些斷點、分叉點和轉折點就稱為"節點"。就是這些節點提供了指紋唯一性的確認信息。
指紋上的節點有四種不同特性:
1.
分類
-
節點有以下幾種類型,最典型的是終結點和分叉點
A.
終結點(Ending)
--
一條紋路在此終結。
B.
分叉點(Bifurcation)
--
一條紋路在此分開成為兩條或更多的紋路。
C.
分歧點(Ridge
Divergence)
--
兩條平行的紋路在此分開。
D.
孤立點(Dot
or
Island)
--
一條特別短的紋路,以至於成為一點
E.
環點(Enclosure)
--
一條紋路分開成為兩條之後,立即有合並成為一條,這樣形成的一個小環稱為環點
F.
短紋(Short
Ridge)
--
一端較短但不至於成為一點的紋路,
2.
方向(Orientation)
--
節點可以朝著一定的方向。
3.
曲率(Curvature)
--
描述紋路方向改變的速度。
4.
位置(Position)
--
節點的位置通過(x,y)坐標來描述,可以是絕對的,也可以是相對於三角點或特徵點的。
❿ 有哪些開源的指紋識別SDK或者試用版的SDK
指紋識別,是圖形識別技術的一種應用,這種技術一般都涉及 特徵提取,建模,模式匹配等較復雜的演算法,做應用建議是用開源的圖形識別庫。 我幫您找到一個指紋識別開源軟體,SourceAFIS,它包含 指紋識別/匹配SDK開發包和一個通用的自動指紋識別系.