導航:首頁 > 源碼編譯 > 頁面置換演算法lfu演算法

頁面置換演算法lfu演算法

發布時間:2022-08-20 03:59:30

⑴ 頁式管理的請求頁式管理中的置換演算法

功能:需要調入頁面時,選擇內存中哪個物理頁面被置換。稱為replacement policy。
出發點:把未來不再使用的或短期內較少使用的頁面調出,通常只能在局部性原理指導下依據過去的統計數據進行預測。
頁面鎖定(frame locking):用於描述必須常駐內存的操作系統的關鍵部分或時間關鍵(time-critical)的應用進程。實現方法為在頁表中加上鎖定標志位(lock bit)。 輪轉法(RR,round robin)和先進先出演算法(FIFO,first in first out):輪轉法循回換出內存可用區內一個可以被換出的頁,無論該頁是剛被換進或已換進內存很長時間。FIFO演算法總是選擇在內存駐留時間最長的一員將其淘汰。
FIFO演算法認為先調入內存的頁不再被訪問的可能性要比其它頁大,因而選擇最先調入內存的頁換出。實現FIFO演算法需要把各個已分配頁面按分配時間順序鏈接起來,組成FIFO隊列,並設置一置換指針指向FIFO隊列的隊首頁面。這樣,當要進行置換時,只需把置換指針所指的FIFO隊列前頭的頁順次換出,而把換入的頁鏈接在FIFO隊尾即可。
由實驗和測試發現FIPO演算法和RR演算法的內存利用率不高。這是因為,這兩種演算法都是基於CPU按線性順序訪問地址空間這一假設。事實上,許多時候.CPU不是按線性順序訪問地址空間的。
Belady現象:一般來說,對於任一作業或進程,如果給它分配的內存頁面數越接近於它所要求的頁面數,則發生缺頁的次數會越少。在極限情況下,這個推論是成立的。因為如果給一個進程分配了它所要求的全部頁面,則不會發生缺頁現象。但是,使用FIFO演算法時,在未給進程或作業分配足它所要求的頁面數時,有時會出現分配的頁面數增多,缺頁次數反而增加的奇怪現象。這種現象稱為Belady現象。 最近最久未使用頁面置換演算法(LRU, Least Recently Used):
選擇內存中最久未使用的頁面被置換。這是局部性原理的合理近似,性能接近最佳演算法。但由於需要記錄頁面使用時間的先後關系,硬體開銷太大。硬體機構如:
(1) 一個特殊的棧:把被訪問的頁面移到棧頂,於是棧底的是最久未使用頁面。
(2) 每個頁面設立移位寄存器:被訪問時左邊最高位置1,定期右移並且最高位補0,於是寄存器數值最小的是最久未使用頁面。
比較常用的近似演算法有:
(a) 最不經常使用頁面淘汰演算法(LFU, Least Frequently Used)
(b) 最近沒有使用頁面淘汰(NRU, Not Recently Used) 理想型淘汰演算法(OPT,Optimal Replacement Algorithm)
該演算法淘汰在訪問串中將來再也不出現的或是離當前最遠的位置上出現的頁。它是一種理想化的演算法,性能最好,但在實際上難於實現。

⑵ 莫系統空閑分區如下表.哪種演算法可滿足該作業序列請求為什麼

一、進程(作業)調度演算法
l 先來先服務調度演算法(FCFS):每次調度是從就緒隊列中,選擇一個最先進入就緒隊列的進程,把處理器分配給該進程,使之得到執行。該進程一旦佔有了處理器,它就一直運行下去,直到該進程完成或因發生事件而阻塞,才退出處理器。特點:利於長進程,而不利於短進程。

l 短進程(作業)優先調度演算法(SPF):它是從就緒隊列中選擇一個估計運行時間最短的進程,將處理器分配給該進程,使之佔有處理器並執行,直到該進程完成或因發生事件而阻塞,然後退出處理器,再重新調度。

l 時間片輪轉調度演算法 :系統將所有的就緒進程按進入就緒隊列的先後次序排列。每次調度時把CPU分配給隊首進程,讓其執行一個時間片,當時間片用完,由計時器發出時鍾中斷,調度程序則暫停該進程的執行,使其退出處理器,並將它送到就緒隊列的末尾,等待下一輪調度執行。

l 優先數調度演算法 :它是從就緒隊列中選擇一個優先權最高的進程,讓其獲得處理器並執行。

l 響應比高者優先調度演算法:它是從就緒隊列中選擇一個響應比最高的進程,讓其獲得處理器執行,直到該進程完成或因等待事件而退出處理器為止。特點:既照顧了短進程,又考慮了進程到達的先後次序,也不會使長進程長期得不到服務,因此是一個比較全面考慮的演算法,但每次進行調度時,都需要對各個進程計算響應比。所以系統開銷很大,比較復雜。

l 多級隊列調度演算法

基本概念:

作業周轉時間(Ti)=完成時間(Tei)-提交時間(Tsi)

作業平均周轉時間(T)=周轉時間/作業個數

作業帶權周轉時間(Wi)=周轉時間/運行時間

響應比=(等待時間+運行時間)/運行時間

二、存儲器連續分配方式中分區分配演算法
n 首次適應分配演算法(FF):對空閑分區表記錄的要求是按地址遞增的順序排列的,每次分配時,總是從第1條記錄開始順序查找空閑分區表,找到第一個能滿足作業長度要求的空閑區,分割這個空閑區,一部分分配給作業,另一部分仍為空閑區。

n 循環首次適應演算法:每次分配均從上次分配的位置之後開始查找。

n 最佳適應分配演算法(BF):是按作業要求從所有的空閑分區中挑選一個能滿足作業要求的最小空閑區,這樣可保證不去分割一個更大的區域,使裝入大作業時比較容易得到滿足。為實現這種演算法,把空閑區按長度遞增次序登記在空閑區表中,分配時,順序查找。

三、頁面置換演算法
l 最佳置換演算法(OPT) :選擇以後永不使用或在最長時間內不再被訪問的內存頁面予以淘汰。

l 先進先出置換演算法(FIFO):選擇最先進入內存的頁面予以淘汰。

l 最近最久未使用演算法(LRU):選擇在最近一段時間內最久沒有使用過的頁,把它淘汰。

l 最少使用演算法(LFU):選擇到當前時間為止被訪問次數最少的頁轉換。

四、磁碟調度
n 先來先服務(FCFS):是按請求訪問者的先後次序啟動磁碟驅動器,而不考慮它們要訪問的物理位置

n 最短尋道時間優先(SSTF):讓離當前磁軌最近的請求訪問者啟動磁碟驅動器,即是讓查找時間最短的那個作業先執行,而不考慮請求訪問者到來的先後次序,這樣就克服了先來先服務調度演算法中磁臂移動過大的問題

n 掃描演算法(SCAN)或電梯調度演算法:總是從磁臂當前位置開始,沿磁臂的移動方向去選擇離當前磁臂最近的那個柱面的訪問者。如果沿磁臂的方向無請求訪問時,就改變磁臂的移動方向。在這種調度方法下磁臂的移動類似於電梯的調度,所以它也稱為電梯調度演算法。

n 循環掃描演算法(CSCAN):循環掃描調度演算法是在掃描演算法的基礎上改進的。磁臂改為單項移動,由外向里。當前位置開始沿磁臂的移動方向去選擇離當前磁臂最近的哪個柱面的訪問者。如果沿磁臂的方向無請求訪問時,再回到最外,訪問柱面號最小的作業請求。

⑶ lru/lfu可以稱為近似opt演算法嗎

LRU是最近最少使用頁面置換演算法(Least Recently Used),也就是首先淘汰最長時間未被使用的頁面!
LFU是最近最不常用頁面置換演算法(Least Frequently Used),也就是淘汰一定時期內被訪問次數最少的頁!
比如,第二種方法的時期T為10分鍾,如果每分鍾進行一次調頁,主存塊為3,若所需頁面走向為2 1 2 1 2 3 4
注意,當調頁面4時會發生缺頁中斷
若按LRU演算法,應換頁面1(1頁面最久未被使用) 但按LFU演算法應換頁面3(十分鍾內,頁面3隻使用了一次)
可見LRU關鍵是看頁面最後一次被使用到發生調度的時間長短,
而LFU關鍵是看一定時間段內頁面被使用的頻率!

⑷ 操作系統題:頁面置換演算法 OPT FIFO LRU

fifo就是先進先出,可以想像成隊列
lru是最久未使用,當需要替換頁面的時候,向前面看,最久沒使用的那個被替換
opt是替換頁面的時候,優先替換後面最遲出現的。
不懂再問。。

⑸ 請分別給出三種不同的頁面置換演算法,並簡要說明他們的優缺點

[fifo.rar]
-
操作系統中內存頁面的先進先出的替換演算法fifo
[先進先出頁面演算法程序.rar]
-
分別實現最佳置換演算法(optimal)、先進先出(fifo)頁面置換演算法和最近最久未使用(LRU)置換演算法,並給出各演算法缺頁次數和缺頁率。
[0022.rar]
-
模擬分頁式虛擬存儲管理中硬體的地址轉換和缺頁中斷,以及選擇頁面調度演算法處理缺頁中斷
[Change.rar]
-
java實現操作系統的頁面置換
其中包括
最佳置換演算法(Optimal)、先進先出演算法(First-in,
First-out)
、最近最久不用的頁面置換演算法(LeastRecently
Used
Replacement)三種演算法的實現
[M_Management.rar]
-
操作系統中內存管理頁面置換演算法的模擬程序,採用的是LRU置換演算法
[detail_of_44b0x_TCPIP.rar]
-
TCPIP
程序包載入到44b0x
的ADS1.2工程文件的說明書。說名了載入過程的細節和如何處理演示程序和代碼。演示代碼已經上傳,大家可以搜索
[.rar]
-
java操作系統頁面置換演算法:
(1)進先出的演算法(fifo)
(2)最近最少使用的演算法(LRU)
(3)最佳淘汰演算法(OPT)
(4)最少訪問頁面演算法(LFU)
(註:由本人改成改進型Clock演算法)
(5)最近最不經常使用演算法(NUR)

⑹ 頁面置換演算法的常見的置換演算法

最簡單的頁面置換演算法是先入先出(FIFO)法。這種演算法的實質是,總是選擇在主存中停留時間最長(即最老)的一頁置換,即先進入內存的頁,先退出內存。理由是:最早調入內存的頁,其不再被使用的可能性比剛調入內存的可能性大。建立一個FIFO隊列,收容所有在內存中的頁。被置換頁面總是在隊列頭上進行。當一個頁面被放入內存時,就把它插在隊尾上。
這種演算法只是在按線性順序訪問地址空間 時才是理想的,否則效率不高。因為那些常被訪問的頁,往往在主存中也停留得最久,結果它們因變「老」而不得不被置換出去。
FIFO的另一個缺點是,它有一種異常現象,即在增加存儲塊的情況下,反而使缺頁中斷率增加了。當然,導致這種異常現象的頁面走向實際上是很少見的。
FIFO演算法和OPT演算法之間的主要差別是,FIFO演算法利用頁面進入內存後的時間長短作為置換依據,而OPT演算法的依據是將來使用頁面的時間。如果以最近的過去作為不久將來的近似,那麼就可以把過去最長一段時間里不曾被使用的頁面置換掉。它的實質是,當需要置換一頁時,選擇在之前一段時間里最久沒有使用過的頁面予以置換。這種演算法就稱為最久未使用演算法(Least Recently Used,LRU)。
LRU演算法是與每個頁面最後使用的時間有關的。當必須置換一個頁面時,LRU演算法選擇過去一段時間里最久未被使用的頁面。
LRU演算法是經常採用的頁面置換演算法,並被認為是相當好的,但是存在如何實現它的問題。LRU演算法需要實際硬體的支持。其問題是怎麼確定最後使用時間的順序,對此有兩種可行的辦法:
1.計數器。最簡單的情況是使每個頁表項對應一個使用時間欄位,並給CPU增加一個邏輯時鍾或計數器。每次存儲訪問,該時鍾都加1。每當訪問一個頁面時,時鍾寄存器的內容就被復制到相應頁表項的使用時間欄位中。這樣我們就可以始終保留著每個頁面最後訪問的「時間」。在置換頁面時,選擇該時間值最小的頁面。這樣做, 不僅要查頁表,而且當頁表改變時(因CPU調度)要 維護這個頁表中的時間,還要考慮到時鍾值溢出的問題。
2.棧。用一個棧保留頁號。每當訪問一個頁面時,就把它從棧中取出放在棧頂上。這樣一來,棧頂總是放有目前使用最多的頁,而棧底放著目前最少使用的頁。由於要從棧的中間移走一項,所以要用具有頭尾指針的雙向鏈連起來。在最壞的情況下,移走一頁並把它放在棧頂上需要改動6個指針。每次修改都要有開銷,但需要置換哪個頁面卻可直接得到,用不著查找,因為尾指針指向棧底,其中有被置換頁。
因實現LRU演算法必須有大量硬體支持,還需要一定的軟體開銷。所以實際實現的都是一種簡單有效的LRU近似演算法。
一種LRU近似演算法是最近未使用演算法(Not Recently Used,NUR)。它在存儲分塊表的每一表項中增加一個引用位,操作系統定期地將它們置為0。當某一頁被訪問時,由硬體將該位置1。過一段時間後,通過檢查這些位可以確定哪些頁使用過,哪些頁自上次置0後還未使用過。就可把該位是0的頁淘汰出去,因為在之前最近一段時間里它未被訪問過。
4)Clock置換演算法(LRU演算法的近似實現)
5)最少使用(LFU)置換演算法
在採用最少使用置換演算法時,應為在內存中的每個頁面設置一個移位寄存器,用來記錄該頁面被訪問的頻率。該置換演算法選擇在之前時期使用最少的頁面作為淘汰頁。由於存儲器具有較高的訪問速度,例如100 ns,在1 ms時間內可能對某頁面連續訪 問成千上萬次,因此,通常不能直接利用計數器來記錄某頁被訪問的次數,而是採用移位寄存器方式。每次訪問某頁時,便將該移位寄存器的最高位置1,再每隔一定時間(例如100 ns)右移一次。這樣,在最近一段時間使用最少的頁面將是∑Ri最小的頁。
LFU置換演算法的頁面訪問圖與LRU置換演算法的訪問圖完全相同;或者說,利用這樣一套硬體既可實現LRU演算法,又可實現LFU演算法。應該指出,LFU演算法並不能真正反映出頁面的使用情況,因為在每一時間間隔內,只是用寄存器的一位來記錄頁的使用情況,因此,訪問一次和訪問10 000次是等效的。
6)工作集演算法
7)工作集時鍾演算法
8)老化演算法(非常類似LRU的有效演算法)
9)NRU(最近未使用)演算法
10)第二次機會演算法
第二次機會演算法的基本思想是與FIFO相同的,但是有所改進,避免把經常使用的頁面置換出去。當選擇置換頁面時,檢查它的訪問位。如果是 0,就淘汰這頁;如果訪問位是1,就給它第二次機會,並選擇下一個FIFO頁面。當一個頁面得到第二次機會時,它的訪問位就清為0,它的到達時間就置為當前時間。如果該頁在此期間被訪問過,則訪問位置1。這樣給了第二次機會的頁面將不被淘汰,直至所有其他頁面被淘汰過(或者也給了第二次機會)。因此,如果一個頁面經常使用,它的訪問位總保持為1,它就從來不會被淘汰出去。
第二次機會演算法可視為一個環形隊列。用一個指針指示哪一頁是下面要淘汰的。當需要一個 存儲塊時,指針就前進,直至找到訪問位是0的頁。隨著指針的前進,把訪問位就清為0。在最壞的情況下,所有的訪問位都是1,指針要通過整個隊列一周,每個頁都給第二次機會。這時就退化成FIFO演算法了。

⑺ 實現虛擬存儲器最常用的演算法是哪個

頁式虛擬存儲器的頁面置換演算法一般有:
最佳置換演算法(OPT),先進先出置換演算法(FIFO),最近最久未使用置換演算法(LRU),Clock置換演算法,最少使用置換演算法(LFU),頁面緩存演算法(PBA)等。
先進先出(FIFO)置換演算法是最直觀的置換演算法,由於它可能是性能最差的演算法,故實際應用極少。(摘錄自湯的教材)

⑻ [求助]LFU頁面置換演算法

least frequently used (LFU),要求在頁置換時置換引用計數最小的頁。
3,2,1
0進入時,缺頁。置換最近最小的1。內存:3,2,0
3,2
4進入時,缺頁。置換最近最小的0。內存:3,2,4
3,2
1進入時,缺頁。置換最近最小的4。內存:3,2,1
0進入時,缺頁。置換最近最小的1。內存:3,2,0
4進入時,缺頁。置換最近最小的0。內存:3,2,4

⑼ 採用近期最少使用(LFU)演算法模擬請求分頁系統(C語言實現)

你這個問題拿到網路上是不可能有人回答你的,而且像這種操作系統的問題,步驟這么多是要收費的。去csdn求助試試。

閱讀全文

與頁面置換演算法lfu演算法相關的資料

熱點內容
ajax調用java後台 瀏覽:904
活塞式壓縮機常見故障 瀏覽:614
break演算法 瀏覽:731
換電池的app是什麼 瀏覽:771
單片機ad采樣快速發送電腦 瀏覽:22
第五人格伺服器錯誤是什麼回事兒 瀏覽:467
查看手機谷歌伺服器地址 瀏覽:191
python操作zookeeper 瀏覽:705
蘋果手機dcim文件夾顯示不出來 瀏覽:430
如何壓縮文件夾聯想電腦 瀏覽:583
程序員的學習之旅 瀏覽:440
apkdb反編譯 瀏覽:922
雪花演算法為什麼要二進制 瀏覽:825
在文檔中打開命令行工具 瀏覽:608
android圖標尺寸規范 瀏覽:369
python實用工具 瀏覽:208
流量計pdf 瀏覽:936
科東加密認證價格 瀏覽:532
dos命令讀文件 瀏覽:997
成為程序員需要什麼學歷 瀏覽:674