導航:首頁 > 源碼編譯 > 本科生適合路徑優化演算法

本科生適合路徑優化演算法

發布時間:2022-08-20 09:43:41

Ⅰ 路徑分析的最優路徑分析方法

1.道路預處理
進行道路數據錄入時,往往在道路的交叉接合處出現重疊或相離的情況,不宜計算機處理。因此,需要對原始數據進行預處理,使道路接合符合處理要求。進行預處理時,取每條線段的首末節點坐標為圓心,以給定的閾值為半徑作圓域,判斷其他線段是否與圓域相交,如果相交,則相交的各個線對象共用一個節點號。
2.道路自動斷鏈
對道路進行預處理之後即可獲得比較理想的數據,在此基礎上再進行道路的自動斷鏈。步驟如下:
(1)取出所有線段記錄數n,從第一條線段開始;
(2)找出所有與之相交的線段並求出交點數m;
(3)將m個交點和該線段節點在判斷無重合後進行排序;
(4)根據交點數量,該線段被分成m+1段;
(5)第一段在原始位置不變,後m段從記錄尾開始遞增;
(6)重復(2)~(5),循環至n。
3.節點匹配
拓撲關系需使用統一的節點。節點匹配方法是按記錄順序將所有線段的始末點加上相應節點號,坐標相同的節點共用一個節點號,與前面所有線段首末點都不相同的節點按自然順序遞增1。
4.迪傑克斯特拉(Dijkstra)演算法
經典的圖論與計算機演算法的有效結合,使得新的最短路徑演算法不斷涌現。目前提出的最短路徑演算法中,使用最多、計算速度比較快,又比較適合於計算兩點之間的最短路徑問題的數學模型就是經典的Dijkstra演算法。
該演算法是典型的單源最短路徑演算法,由Dijkstra EW於1959年提出,適用於所有弧的權均為非負的情況,主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。該演算法的基本思想是:認為兩節點間最佳路徑要麼是直接相連,要麼是通過其他已找到的與起始點的最佳路徑的節點中轉點。定出起始點P0後,定能找出一個與之直接相連且路徑長度最短的節點,設為P1,P0到P1就是它們間的最佳路徑。
Dijkstra演算法的基本流程如下:首先將網路中所有節點分成兩組,一組包含了已經確定屬於最短路徑中點的集合,記為S(該集合在初始狀態只有一個源節點,以後每求得一條最短路徑,就將其加入到集合S中,直到全部頂點都加入到S中,演算法就結束了);另一組是尚未確定最短路徑的節點的集合,記為V,按照最短路徑長度遞增的次序依次把第二組的頂點加入到第一組中,在加入的過程中總保持從源點到S中各頂點的最短路徑長度不大於從源點到V中任何頂點的最短路徑長度。此外,每個頂點對應一個距離,S中的頂點距離就是從源點到此頂點的最短路徑長度,V中的頂點距離是從源點到此頂點只包括S中的頂點為中間頂點的當前最短路徑長度。

Ⅱ 在路徑優化問題中下面哪種演算法最容易編程,或者說能不能不編程單靠計算就可以得出答案最速下降法、部分

模擬退火,Floyed,Dijkstra沒有單純計算就可以得到答案的

Ⅲ 節約里程法,遺傳演算法,神經網路這幾種演算法哪個簡單易懂在路徑優化問題中哪種演算法最簡單易懂

路徑優化的話我認為遺傳演算法最好用,也比較簡單。

Ⅳ 求線性規劃演算法的路徑優化畢設

線性規劃問題的數學模型有很多解法 比如最簡單的 圖解法 還有單純形法 Dijkstra演算法(不懂),其實 我覺得 這類問題 均可用電腦軟體來解決 如matlab(通用)、 lindo(推薦:專門解決最優化問題且軟體應用簡單易學)

Ⅳ 路徑優化方法

在配送路線選擇中.主要採取模型化方法進行路線確定。常見的模型有Tabu Search演算法、SOM方法、遺傳演算法、節約里程法等。節約里程法,又稱車輛運行計劃法(VSP—VehiclesSchedIlling Program),適用於實際工作中要求得較優解或最優的近似解。而不一定需要求得最優解的情況。它的基本原理是三角形的一邊之長必定小於另外兩邊之和。當配送中心與用戶里三角形關系時.由配送中心P單獨向兩個用戶A和B往返配貨的車輛運行距離必須大於以配送中心P巡迴向兩用戶發貨的距離。那麼,所計算的結果:2Lpa 2Lpb-(Lp^Lpb Lab)=Lpa Lpb—hb為巡迴發貨比往返發貨的節約里程。

Ⅵ 想問一下如何用matlab編寫下面的演算法,關於路徑優化:

嗯,某個矩陣,一行元素之和為1,一列元素之和為1,某p行的元素之和減去某p列的元素之和為零。目標函數是什麼?C(i,j)是已知的距離矩陣吧。

如果這樣的話,用lingo解很快,引入一個限制x變數為@bin,也就是0-1變數。推薦用這個軟體來做很快很簡單。

matlab的忘得差不多了。你要是想了解的話留個郵箱,我把課件發給你,你自己琢磨一下。數學不好,扯到演算法上去就不懂不懂了。

Ⅶ 有什麼演算法可以同時解決車輛路徑優化的VRPTW和SDVRP,數學模型怎麼達到

智能優化演算法,比如粒子群演算法、蟻群演算法、禁忌搜索演算法。優點是對問題和模型要求低,搜索速度快;缺點是容易陷入局部最優解。

Ⅷ 蟻群演算法車輛路徑優化問題信息素如何選擇

述了。
目前蟻群演算法主要用在組合優化方面,基本蟻群演算法的思路是這樣的:
1. 在初始狀態下,一群螞蟻外出,此時沒有信息素,那麼各自會隨機的選擇一條路徑。
2. 在下一個狀態,每隻螞蟻到達了不同的點,從初始點到這些點之間留下了信息素,螞蟻繼續走,已經到達目標的螞蟻開始返回,與此同時,下一批螞蟻出動,它們都會按照各條路徑上信息素的多少選擇路線(selection),更傾向於選擇信息素多的路徑走(當然也有隨機性)。
3. 又到了再下一個狀態,剛剛沒有螞蟻經過的路線上的信息素不同程度的揮發掉了(evaporation),而剛剛經過了螞蟻的路線信息素增強(reinforcement)。然後又出動一批螞蟻,重復第2個步驟。
每個狀態到下一個狀態的變化稱為一次迭代,在迭代多次過後,就會有某一條路徑上的信息素明顯多於其它路徑,這通常就是一條最優路徑。
關鍵的部分在於步驟2和3:
步驟2中,每隻螞蟻都要作出選擇,怎樣選擇呢?
selection過程用一個簡單的函數實現:
螞蟻選擇某條路線的概率=該路線上的信息素÷所有可選擇路線的信息素之和
假設螞蟻在i點,p(i,j)表示下一次到達j點的概率,而τ(i,j)表示ij兩點間的信息素,則:
p(i,j)=τ(i,j)/∑τ(i)
(如果所有可選路線的信息素之和∑τ(i)=0,即前面還沒有螞蟻來過,概率就是一個[0,1]上的隨機值,即隨機選擇一條路線)
步驟3中,揮發和增強是演算法的關鍵所在(也就是如何數學定義信息素的)
evaporation過程和reinforcement過程定義了一個揮發因子,是迭代次數k的一個函數
ρ(k)=1-lnk/ln(k+1)
最初設定每條路徑的信息素τ(i,j,0)為相同的值
然後,第k+1次迭代時,信息素的多少
對於沒有螞蟻經過的路線:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k),顯然信息素減少了
有螞蟻經過的路線:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k)+ρ(k)/|W|,W為所有點的集合
為什麼各個函數要如此定義,這個問題很難解釋清楚,這也是演算法的精妙所在。如此定義信息素的揮發和增強,以及路徑選擇,根據馬爾可夫過程(隨機過程之一)能夠推導出,在迭代了足夠多次以後,演算法能夠收斂到最佳路徑。
組合優化很有意思的,像禁忌搜索、模擬退火、蟻群演算法、遺傳演算法、神經網路這些演算法能夠解決很多生活中的實際問題,樓主有空可以招本書看看。

Ⅸ 本科生真的很不適合演算法崗位嗎

先說結論:有難度,演算法工作兩年,身邊都是碩士和博士,真心想做演算法,可以繼續讀個碩士。演算法內卷嚴重,很多人也都是在勸退。不過這也是我國快速發展帶來的問題,試問哪個行業不是內卷嚴重?大家一起卷唄。學習經驗和路線,我整理過,原文如下:

一、前言

一直以來,被問到最多的問題就是「演算法的學習路線」。

今天,它來了。

我會帶著大家看看,我們需要學些啥,利用這個假期,我甚至還收集整理了配套視頻和資料,暖男石錘啊,這期文章有用的話,別忘三連哦!

二、學習路線

主要分為 4 個部分:數學基礎、編程能力、演算法基礎、實戰。


閱讀全文

與本科生適合路徑優化演算法相關的資料

熱點內容
安卓qq郵箱格式怎麼寫 瀏覽:429
如何電信租用伺服器嗎 瀏覽:188
編程中計算根號的思維 瀏覽:181
可愛的程序員16集背景音樂 瀏覽:446
軟體代碼內容轉換加密 瀏覽:795
什麼app看電視不要錢的 瀏覽:16
烏班圖怎麼安裝c語言編譯器 瀏覽:278
plc通訊塊編程 瀏覽:923
我的世界伺服器怎麼清地皮 瀏覽:421
ftp伺服器如何批量改名 瀏覽:314
網易我的世界伺服器成員如何傳送 瀏覽:268
公司雲伺服器遠程訪問 瀏覽:633
法哲學pdf 瀏覽:637
清大閱讀app是什麼 瀏覽:447
怎麼用qq瀏覽器整體解壓文件 瀏覽:585
肺組織壓縮15 瀏覽:270
安卓手機為什麼換電話卡沒反應 瀏覽:797
諸子集成pdf 瀏覽:339
php注冊框代碼 瀏覽:718
手機加密好還是不加好好 瀏覽:815