導航:首頁 > 源碼編譯 > 機器學習演算法優缺點綜述

機器學習演算法優缺點綜述

發布時間:2022-08-23 05:52:32

㈠ 機器學習4種不同數據集的優劣對比

機器學習4種不同數據集的優劣對比
數據源決定了機器學習演算法,機器演算法的選擇好壞也決定了數據的分析質量等,因此,我們選擇機器演算法的時候,要首先弄懂各個機器學習數據集的優劣性,主要特點,方可著手處理,才能起到事半功倍的效果。下面隨著大聖眾包小編一起看看4種不同的機器學習數據集對比吧。
Iris

Iris也稱鳶尾花卉數據集,是一類多重變數分析的數據集。通過花萼長度,花萼寬度,花瓣長度,花瓣寬度4個屬性預測鳶尾花卉屬於(Setosa,Versicolour,Virginica)三個種類中的哪一類。
Alt

該數據從美國1994年人口普查資料庫抽取而來,可以用來預測居民收入是否超過50K$/year。該數據集類變數為年收入是否超過50k$,屬性變數包含年齡,工種,學歷,職業,人種等重要信息,值得一提的是,14個屬性變數中有7個類別型變數。
Wine

這份數據集包含來自3種不同起源的葡萄酒的共178條記錄。13個屬性是葡萄酒的13種化學成分。通過化學分析可以來推斷葡萄酒的起源。值得一提的是所有屬性變數都是連續變數。
CarEvaluation

這是一個關於汽車測評的數據集,類別變數為汽車的測評,(unacc,ACC,good,vgood)分別代表(不可接受,可接受,好,非常好),而6個屬性變數分別為「買入價」,「維護費」,「車門數」,「可容納人數」,「後備箱大小」,「安全性」。值得一提的是6個屬性變數全部是有序類別變數,比如「可容納人數」值可為「2,4,more」,「安全性」值可為「low,med,high」。
小結
通過比較以上4個數據集的差異,簡單地總結:當需要試驗較大量的數據時,我們可以想到「Alt」;當想研究變數之間的相關性時,我們可以選擇變數值只為整數或實數的「Iris」和「Wine」;當想研究logistic回歸時,我們可以選擇類變數值只有兩種的「Alt」;當想研究類別變數轉換時,我們可以選擇屬性變數為有序類別的「CarEvaluation」。大聖眾包小編建議更多的嘗試還需要對這些數據集了解更多才行。

㈡ 機器學習有哪些演算法

1. 線性回歸
在統計學和機器學習領域,線性回歸可能是最廣為人知也最易理解的演算法之一。
2. Logistic 回歸
Logistic 回歸是機器學習從統計學領域借鑒過來的另一種技術。它是二分類問題的首選方法。
3. 線性判別分析
Logistic 回歸是一種傳統的分類演算法,它的使用場景僅限於二分類問題。如果你有兩個以上的類,那麼線性判別分析演算法(LDA)是首選的線性分類技術。
4.分類和回歸樹
決策樹是一類重要的機器學習預測建模演算法。
5. 樸素貝葉斯
樸素貝葉斯是一種簡單而強大的預測建模演算法。
6. K 最近鄰演算法
K 最近鄰(KNN)演算法是非常簡單而有效的。KNN 的模型表示就是整個訓練數據集。
7. 學習向量量化
KNN 演算法的一個缺點是,你需要處理整個訓練數據集。
8. 支持向量機
支持向量機(SVM)可能是目前最流行、被討論地最多的機器學習演算法之一。
9. 袋裝法和隨機森林
隨機森林是最流行也最強大的機器學習演算法之一,它是一種集成機器學習演算法。

想要學習了解更多機器學習的知識,推薦CDA數據分析師課程。CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證,旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。點擊預約免費試聽課。

㈢ 什麼是深度學習有什麼優點和缺點

深度學習是什麼?
深度學習是機器學習領域中對模式(聲音、圖像等等)進行建模的一種方法,它也是一種基於統計的概率模型。在對各種模式進行建模之後,便可以對各種模式進行識別了,例如待建模的模式是聲音的話,那麼這種識別便可以理解為語音識別。而類比來理解,如果說將機器學習演算法類比為排序演算法,那麼深度學習演算法便是眾多排序演算法當中的一種(例如冒泡序列),這種演算法在某些應用場景中,會具有一定的優勢。

深度學習的優點?
為了進行某種模式的識別,通常的做法首先是以某種方式,提取這個模式中的特徵。這個特徵的提取方式有時候是人工設計或指定的,有時候是在給定相對較多數據的前提下,由計算機自己總結出來的。深度學習提出了一種讓計算機自動學習出模式特徵的方法,並將特徵學習融入到了建立模型的過程中,從而減少了人為設計特徵造成的不完備性。而目前以深度學習為核心的某些機器學習應用,在滿足特定條件的應用場景下,已經達到了超越現有演算法的識別或分類性能。

深度學習的缺點?
深度學習雖然能夠自動的學習模式的特徵,並可以達到很好的識別精度,但這種演算法工作的前提是,使用者能夠提供「相當大」量級的數據。也就是說在只能提供有限數據量的應用場景下,深度學習演算法便不能夠對數據的規律進行無偏差的估計了,因此在識別效果上可能不如一些已有的簡單演算法。另外,由於深度學習中,圖模型的復雜化導致了這個演算法的時間復雜度急劇提升,為了保證演算法的實時性,需要更高的並行編程技巧以及更好更多的硬體支持。所以,目前也只有一些經濟實力比較強大的科研機構或企業,才能夠用深度學習演算法,來做一些比較前沿而又實用的應用。

㈣ 機器學習演算法有哪些,最常用是哪些幾種,有什麼優點

樓主肯定對機器學習了解不多才會提這種問題。這問題專業程度看起來和「機器學習工程師」這詞彙一樣。
機器學習,基礎的PCA模型理論,貝葉斯,boost,Adaboost,
模式識別中的各種特徵,諸如Hog,Haar,SIFT等
深度學習里的DBN,CNN,BP,RBM等等。
非專業出身,只是略懂一點。

沒有常用的,只是針對需求有具體的設計,或者需要自己全新設計一個合適的演算法,現在最熱門的算是CNN(convolutional neural networks)卷積神經網路了。
優點:不需要訓練獲取特徵,在學習過程中自動提取圖像中的特徵,免去了常規方法中,大量訓練樣本的時間。在樣本足夠大的情況下,能夠得到非常精確的識別結果。一般都能95%+的正確率。
缺點:硬體要求高,CUDA的並行框架算是用的很火的了。但是一般的台式機跑一個Demo花費的時間長資源佔用高。不過這也是這塊演算法的通病。

㈤ 機器學習中幾個常見模型的優缺點

機器學習中幾個常見模型的優缺點
樸素貝葉斯:優點:對小規模的數據表現很好,適合多分類任務,適合增量式訓練。
缺點:對輸入數據的表達形式很敏感(連續數據的處理方式)。
決策樹:優點:計算量簡單,可解釋性強,比較適合處理有缺失屬性值的樣本,能夠處理不相關的特徵。缺點:容易過擬合(後續出現了隨機森林,減小了過擬合現象)。
邏輯回歸:優點:實現簡單,分類時計算量非常小,速度很快,存儲資源低。缺點:容易欠擬合,一般准確度不高;只能處理二分類問題(softmax解決多分類),需線性可分。
損失函數:
KNN:優點:思想簡單,理論成熟,既可以用來做分類也可以用來做回歸; 可用於非線性分類;訓練時間復雜度為O(n);准確度高,對數據沒有假設,對outlier不敏感。缺點:計算量大;樣本不平衡時的問題;需要大量的內存;未歸一化時影響很大。
SVM:優點:可用於線性/非線性分類,也可以用於回歸;低泛化誤差;容易解釋;計算復雜度較低。缺點:對參數和核函數的選擇比較敏感;原始的SVM只比較擅長處理二分類問題。
損失函數:
歸一化的作用:
1. 提高梯度下降法求解最優解的速度(很難收斂甚至不能收斂);例如等高線:
2. 有可能提高精度;一些分類器需要計算樣本之間的距離,例如KNN,若一個特徵值范圍較大,距離計算將取決於這個特徵。

㈥ 機器學習中常見的演算法的優缺點之決策樹

決策樹在機器學習中是一個十分優秀的演算法,在很多技術中都需要用到決策樹這一演算法,由此可見,決策樹是一個經典的演算法,在這篇文章中我們給大家介紹決策樹演算法的優缺點,希望這篇文章能夠更好的幫助大家理解決策樹演算法。
其實決策樹倍受大家歡迎的原因就是其中的一個優勢,那就是易於解釋。同時決策樹可以毫無壓力地處理特徵間的交互關系並且是非參數化的,因此你不必擔心異常值或者數據是否線性可分。但是決策樹的有一個缺點就是不支持在線學習,於是在新樣本到來後,決策樹需要全部重建。另一個缺點就是容易出現過擬合,但這也就是諸如隨機森林RF之類的集成方法的切入點。另外,隨機森林經常是很多分類問題的贏家,決策樹訓練快速並且可調,同時大家無須擔心要像支持向量機那樣調一大堆參數,所以在以前都一直很受歡迎。
那麼決策樹自身的優點都有什麼呢,總結下來就是有六點,第一就是決策樹易於理解和解釋,可以可視化分析,容易提取出規則。第二就是可以同時處理標稱型和數值型數據。第三就是比較適合處理有缺失屬性的樣本。第四就是能夠處理不相關的特徵。第五就是測試數據集時,運行速度比較快。第六就是在相對短的時間內能夠對大型數據源做出可行且效果良好的結果。
那麼決策樹的缺點是什麼呢?總結下來有三點,第一就是決策樹容易發生過擬合,但是隨機森林可以很大程度上減少過擬合。第二就是決策樹容易忽略數據集中屬性的相互關聯。第三就是對於那些各類別樣本數量不一致的數據,在決策樹中,進行屬性劃分時,不同的判定準則會帶來不同的屬性選擇傾向;信息增益准則對可取數目較多的屬性有所偏好,而增益率准則CART則對可取數目較少的屬性有所偏好,但CART進行屬性劃分時候不再簡單地直接利用增益率盡心劃分,而是採用一種啟發式規則。
通過上述的內容相信大家已經知道了決策樹的優點和缺點了吧,大家在學習或者使用決策樹演算法的時候可以更好的幫助大家理解決策樹的具體情況,只有了解了這些演算法,我們才能夠更好的使用決策樹演算法。

㈦ 機器學習中演算法的優缺點之最近鄰演算法

機器學習中有個演算法是十分重要的,那就是最近鄰演算法,這種演算法被大家稱為KNN。我們在學習機器學習知識的時候一定要學習這種演算法,其實不管是什麼演算法都是有自己的優缺點的,KNN演算法也不例外,在這篇文章中我們就詳細的給大家介紹一下KNN演算法的優缺點,大家一定要好好學起來喲。
說到KNN演算法我們有必要說一下KNN演算法的主要過程,KNN演算法的主要過程有四種,第一就是計算訓練樣本和測試樣本中每個樣本點的距離,第二個步驟就是對上面所有的距離值進行排序(升序)。第三個步驟就是選前k個最小距離的樣本。第四個步驟就是根據這k個樣本的標簽進行投票,得到最後的分類類別。
那麼大家是否知道如何選擇一個最佳的K值,這取決於數據。一般情況下,在分類時較大的K值能夠減小雜訊的影響,但會使類別之間的界限變得模糊。一般來說,一個較好的K值可通過各種啟發式技術來獲取,比如說交叉驗證。另外雜訊和非相關性特徵向量的存在會使K近鄰演算法的准確性減小。近鄰演算法具有較強的一致性結果,隨著數據趨於無限,演算法保證錯誤率不會超過貝葉斯演算法錯誤率的兩倍。對於一些好的K值,K近鄰保證錯誤率不會超過貝葉斯理論誤差率。
那麼KNN演算法的優點是什麼呢?KNN演算法的優點具體體現在六點,第一就是對數據沒有假設,准確度高,對outlier不敏感。第二就是KNN是一種在線技術,新數據可以直接加入數據集而不必進行重新訓練。第三就是KNN理論簡單,容易實現。第四就是理論成熟,思想簡單,既可以用來做分類也可以用來做回歸。第五就是可用於非線性分類。第六就是訓練時間復雜度為O(n)。由此可見,KNN演算法的優點是有很多的。
那麼KNN演算法的缺點是什麼呢?這種演算法的缺點具體體現在六點,第一就是樣本不平衡時,預測偏差比較大。第二就是KNN每一次分類都會重新進行一次全局運算。第三就是k值大小的選擇沒有理論選擇最優,往往是結合K-折交叉驗證得到最優k值選擇。第四就是樣本不平衡問題(即有些類別的樣本數量很多,而其它樣本的數量很少)效果差。第五就是需要大量內存。第六就是對於樣本容量大的數據集計算量比較大。
正是由於這些優點和缺點,KNN演算法應用領域比較廣泛,在文本分類、模式識別、聚類分析,多分類領域中處處有KNN演算法的身影。
在這篇文章中我們給大家介紹了很多關於KNN演算法的相關知識,通過對這些知識的理解相信大家已經知道該演算法的特點了吧,希望這篇文章能夠幫助大家更好的理解KNN演算法。

㈧ 分析機器學習和深度學習之間的優缺點

首先,需要強調一個概念問題,機器學習包含深度學習。一般來說,與深度學習做區分和對比的是傳統機器學習。
傳統機器學習:有兩大神技,SVM(支撐向量機)和隨機森林。先說優點,速度快,精度尚可,小樣本學習效果也還行。缺點:泛化能力不高。
深度學習:神經網路的分支,先說優點:學習能力強,泛化能力強。缺點:需要大量的訓練樣本進行訓練,門檻低。缺點:要求的硬體配置較高,訓練周期長。

㈨ 數據挖掘十大經典演算法及各自優勢

數據挖掘十大經典演算法及各自優勢

不僅僅是選中的十大演算法,其實參加評選的18種演算法,實際上隨便拿出一種來都可以稱得上是經典演算法,它們在數據挖掘領域都產生了極為深遠的影響。
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;2) 在樹構造過程中進行剪枝;3) 能夠完成對連續屬性的離散化處理;4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。
3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假 定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。
4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。
6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。
8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以 及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。

以上是小編為大家分享的關於數據挖掘十大經典演算法及各自優勢的相關內容,更多信息可以關注環球青藤分享更多干貨

㈩ 深度學習和傳統機器學習相比有哪些優勢

一、數據依賴性

深度學習與傳統的機器學習最主要的區別在於隨著數據規模的增加其性能也不斷增長。當數據很少時,深度學習演算法的性能並不好。這是因為深度學習演算法需要大量的數據來完美地理解它。

三、硬體依賴

深度學習演算法需要進行大量的矩陣運算,GPU 主要用來高效優化矩陣運算,所以 GPU 是深度學習正常工作的必須硬體。與傳統機器學習演算法相比,深度學習更依賴安裝 GPU 的高端機器。

二、特徵處理

特徵處理是將領域知識放入特徵提取器裡面來減少數據的復雜度並生成使學習演算法工作的更好的模式的過程。特徵處理過程很耗時而且需要專業知識。

深度學習嘗試從數據中直接獲取高等級的特徵,這是深度學習與傳統機器學習演算法的主要的不同。基於此,深度學習削減了對每一個問題設計特徵提取器的工作。

例如,卷積神經網路嘗試在前邊的層學習低等級的特徵,然後學習部分人臉,然後是高級的人臉的描述。更多信息可以閱讀神經網路機器在深度學習裡面的有趣應用。

當應用傳統機器學習演算法解決問題的時候,傳統機器學習通常會將問題分解為多個子問題並逐個子問題解決最後結合所有子問題的結果獲得最終結果。相反,深度學習提倡直接的端到端的解決問題。

閱讀全文

與機器學習演算法優缺點綜述相關的資料

熱點內容
組管理命令 瀏覽:979
海南高德司機端是什麼app 瀏覽:861
pid命令 瀏覽:888
一天一圖學會python可視化 瀏覽:309
魔獸編輯文本命令串 瀏覽:497
android中view繪制 瀏覽:798
安卓機內存刪除怎麼恢復 瀏覽:331
Qt環境的編譯軟體放到linux 瀏覽:214
聯創列印系統怎麼連接伺服器 瀏覽:937
杭州行政命令 瀏覽:160
如何查找伺服器日誌 瀏覽:801
加密的鑰匙扣怎麼寫 瀏覽:579
文件夾更新不了怎麼辦 瀏覽:475
壓縮機指示燈亮是什麼原因 瀏覽:956
什麼app訂酒店半價 瀏覽:767
中老年解壓神器 瀏覽:243
訊飛語音ttsandroid 瀏覽:468
腰椎壓縮性骨折術後能坐車嗎 瀏覽:507
python類裝飾器參數 瀏覽:350
均線pdf微盤 瀏覽:793