一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序n個項目要Ο(nlogn)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(nlogn)演算法更快,因為它的內部循環(innerloop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divideandconquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
演算法步驟:
1從數列中挑出一個元素,稱為「基準」(pivot),
2重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。
堆排序的平均時間復雜度為Ο(nlogn) 。
創建一個堆H[0..n-1]
把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1
三:歸並排序
歸並排序(Mergesort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(DivideandConquer)的一個非常典型的應用。
1.申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列
2.設定兩個指針,最初位置分別為兩個已經排序序列的起始位置
3.比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置
4.重復步驟3直到某一指針達到序列尾
5.將另一序列剩下的所有元素直接復制到合並序列尾
四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。
五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜度,五位演算法作者做了精妙的處理。
1.將n個元素每5個一組,分成n/5(上界)組。
2.取出每一組的中位數,任意排序方法,比如插入排序。
3.遞歸的調用selection演算法查找上一步中所有中位數的中位數,設為x,偶數個中位數的情況下設定為選取中間小的一個。
4.用x來分割數組,設小於等於x的個數為k,大於x的個數即為n-k。
5.若i==k,返回x;若i<k,在小於x的元素中遞歸查找第i小的元素;若i>k,在大於x的元素中遞歸查找第i-k小的元素。
終止條件:n=1時,返回的即是i小元素。
六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。
深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。
深度優先遍歷圖演算法步驟:
1.訪問頂點v;
2.依次從v的未被訪問的鄰接點出發,對圖進行深度優先遍歷;直至圖中和v有路徑相通的頂點都被訪問;
3.若此時圖中尚有頂點未被訪問,則從一個未被訪問的頂點出發,重新進行深度優先遍歷,直到圖中所有頂點均被訪問過為止。
上述描述可能比較抽象,舉個實例:
DFS在訪問圖中某一起始頂點v後,由v出發,訪問它的任一鄰接頂點w1;再從w1出發,訪問與w1鄰接但還沒有訪問過的頂點w2;然後再從w2出發,進行類似的訪問,…如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點u為止。
接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。
七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。
BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。
1.首先將根節點放入隊列中。
2.從隊列中取出第一個節點,並檢驗它是否為目標。
如果找到目標,則結束搜尋並回傳結果。
否則將它所有尚未檢驗過的直接子節點加入隊列中。
3.若隊列為空,表示整張圖都檢查過了——亦即圖中沒有欲搜尋的目標。結束搜尋並回傳「找不到目標」。
4.重復步驟2。
八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』salgorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。
該演算法的輸入包含了一個有權重的有向圖G,以及G中的一個來源頂點S。我們以V表示G中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u,v)表示從頂點u到v有路徑相連。我們以E表示G中所有邊的集合,而邊的權重則由權重函數w:E→[0,∞]定義。因此,w(u,v)就是從頂點u到頂點v的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有V中有頂點s及t,Dijkstra演算法可以找到s到t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點s到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。
1.初始時令S=,T=,T中頂點對應的距離值
若存在<V0,Vi>,d(V0,Vi)為<V0,Vi>弧上的權值
若不存在<V0,Vi>,d(V0,Vi)為∞
2.從T中選取一個其距離值為最小的頂點W且不在S中,加入S
3.對其餘T中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的距離值縮短,則修改此距離值
重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止
九:動態規劃演算法
動態規劃(Dynamicprogramming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。
動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。通常許多子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量:一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個子問題解之時直接查表。這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。
關於動態規劃最經典的問題當屬背包問題。
1.最優子結構性質。如果問題的最優解所包含的子問題的解也是最優的,我們就稱該問題具有最優子結構性質(即滿足最優化原理)。最優子結構性質為動態規劃演算法解決問題提供了重要線索。
2.子問題重疊性質。子問題重疊性質是指在用遞歸演算法自頂向下對問題進行求解時,每次產生的子問題並不總是新問題,有些子問題會被重復計算多次。動態規劃演算法正是利用了這種子問題的重疊性質,對每一個子問題只計算一次,然後將其計算結果保存在一個表格中,當再次需要計算已經計算過的子問題時,只是在表格中簡單地查看一下結果,從而獲得較高的效率。
十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下,如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。
樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。
盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。
通過掌握以上演算法,能夠幫你迅速提高編程能力,成為一名優秀的程序員。
⑵ 文本自動分類演算法有哪些呢
文本自動分類演算法主要有樸素貝葉斯分類演算法、支持向量機分類演算法、KNN演算法和決策樹演算法。
樸素貝葉斯分類演算法主要是利用文本中詞的特徵項和類別的組合概率來估算文本屬於哪個類別的概率。
支持向量機分類算分主要是採用特徵提取技術把文本信息轉換為詞向量,然後用詞向量與訓練好的類別數據進行相似度計算。
KNN演算法是在訓練集中找到離它最近的k個文本,並根據這些文本的分類來預測待分類文本屬於哪一個類別。
決策樹演算法是首先建立一個基於樹的預測模型,根據預測模型來對文本進行預測分類。
⑶ 常用機器學習方法有哪些
機器學習中常用的方法有:
(1) 歸納學習
符號歸納學習:典型的符號歸納學習有示例學習、決策樹學習。
函數歸納學習(發現學習):典型的函數歸納學習有神經網路學習、示例學習、發現學習、統計學習。
(2) 演繹學習
(3) 類比學習:典型的類比學習有案例(範例)學習。
(4) 分析學習:典型的分析學習有解釋學習、宏操作學習。
(3)關於樸素貝葉斯分類演算法擴展閱讀:
機器學習常見演算法:
1、決策樹演算法
決策樹及其變種是一類將輸入空間分成不同的區域,每個區域有獨立參數的演算法。決策樹演算法充分利用了樹形模型,根節點到一個葉子節點是一條分類的路徑規則,每個葉子節點象徵一個判斷類別。先將樣本分成不同的子集,再進行分割遞推,直至每個子集得到同類型的樣本,從根節點開始測試,到子樹再到葉子節點,即可得出預測類別。此方法的特點是結構簡單、處理數據效率較高。
2、樸素貝葉斯演算法
樸素貝葉斯演算法是一種分類演算法。它不是單一演算法,而是一系列演算法,它們都有一個共同的原則,即被分類的每個特徵都與任何其他特徵的值無關。樸素貝葉斯分類器認為這些「特徵」中的每一個都獨立地貢獻概率,而不管特徵之間的任何相關性。然而,特徵並不總是獨立的,這通常被視為樸素貝葉斯演算法的缺點。簡而言之,樸素貝葉斯演算法允許我們使用概率給出一組特徵來預測一個類。與其他常見的分類方法相比,樸素貝葉斯演算法需要的訓練很少。在進行預測之前必須完成的唯一工作是找到特徵的個體概率分布的參數,這通常可以快速且確定地完成。這意味著即使對於高維數據點或大量數據點,樸素貝葉斯分類器也可以表現良好。
3、支持向量機演算法
基本思想可概括如下:首先,要利用一種變換將空間高維化,當然這種變換是非線性的,然後,在新的復雜空間取最優線性分類表面。由此種方式獲得的分類函數在形式上類似於神經網路演算法。支持向量機是統計學習領域中一個代表性演算法,但它與傳統方式的思維方法很不同,輸入空間、提高維度從而將問題簡短化,使問題歸結為線性可分的經典解問題。支持向量機應用於垃圾郵件識別,人臉識別等多種分類問題。
⑷ 為什麼樸素貝葉斯稱為「樸素」請簡述樸素貝葉斯分類的主要思想
樸素貝葉斯分類器是一種應用基於獨立假設的貝葉斯定理的簡單概率分類器,之所以成為樸素,應該是Naive的直譯,意思為簡單,樸素,天真。
1、貝葉斯方法
貝葉斯方法是以貝葉斯原理為基礎,使用概率統計的知識對樣本數據集進行分類。由於其有著堅實的數學基礎,貝葉斯分類演算法的誤判率是很低的。
貝葉斯方法的特點是結合先驗概率和後驗概率,即避免了只使用先驗概率的主觀偏見,也避免了單獨使用樣本信息的過擬合現象。貝葉斯分類演算法在數據集較大的情況下表現出較高的准確率,同時演算法本身也比較簡單。
2、樸素貝葉斯演算法
樸素貝葉斯演算法(Naive Bayesian algorithm) 是應用最為廣泛的分類演算法之一。
樸素貝葉斯方法是在貝葉斯演算法的基礎上進行了相應的簡化,即假定給定目標值時屬性之間相互條件獨立。也就是說沒有哪個屬性變數對於決策結果來說佔有著較大的比重,也沒有哪個屬性變數對於決策結果佔有著較小的比重。
雖然這個簡化方式在一定程度上降低了貝葉斯分類演算法的分類效果,但是在實際的應用場景中,極大地簡化了貝葉斯方法的復雜性。
(4)關於樸素貝葉斯分類演算法擴展閱讀
研究意義
人們根據不確定性信息作出推理和決策需要對各種結論的概率作出估計,這類推理稱為概率推理。概率推理既是概率學和邏輯學的研究對象,也是心理學的研究對象,但研究的角度是不同的。概率學和邏輯學研究的是客觀概率推算的公式或規則。
而心理學研究人們主觀概率估計的認知加工過程規律。貝葉斯推理的問題是條件概率推理問題,這一領域的探討對揭示人們對概率信息的認知加工過程與規律、指導人們進行有效的學習和判斷決策都具有十分重要的理論意義和實踐意義。
⑸ 機器學習中常見演算法優缺點之樸素貝葉斯演算法
在機器學習中有很多演算法,而有一種演算法有著堅實的數學背景,並且被廣泛使用,這種演算法就是樸素貝葉斯演算法。當然,樸素貝葉斯演算法的優點有很多,但這種演算法的缺點也是我們不能忽視的,那麼大家知道不知道樸素貝葉斯演算法的優點和缺點是什麼呢?下面我們就給大家介紹一下這個問題。
那麼什麼是樸素貝葉斯演算法呢?其實樸素貝葉斯屬於生成式模型,也就是關於生成模型和判別式模型,主要還是在於是否需要求聯合分布,這種演算法是一種比較簡單的演算法,你只需做一堆計數即可。如果注有條件獨立性假設,樸素貝葉斯分類器的收斂速度將快於判別模型,比如邏輯回歸,所以你只需要較少的訓練數據即可。即使NB條件獨立假設不成立,NB分類器在實踐中仍然表現的很出色。它的主要缺點是它不能學習特徵間的相互作用,用mRMR中R來講,就是特徵冗餘。
那麼樸素貝葉斯演算法的優點是什麼呢?這種演算法的優點有五個,第一就是樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。第二就是對大數量訓練和查詢時具有較高的速度。即使使用超大規模的訓練集,針對每個項目通常也只會有相對較少的特徵數,並且對項目的訓練和分類也僅僅是特徵概率的數學運算而已。第三就是對小規模的數據表現很好,能個處理多分類任務,適合增量式訓練(即可以實時的對新增的樣本進行訓練)。第四就是對缺失數據不太敏感,演算法也比較簡單,常用於文本分類。第五就是樸素貝葉斯對結果解釋容易理解。
當然,樸素貝葉斯演算法的缺點也是很明顯的,樸素貝葉斯演算法的缺點有四點,第一就是需要計算先驗概率。第二就是分類決策存在錯誤率。第三就是對輸入數據的表達形式很敏感。第四就是對由於使用了樣本屬性獨立性的假設,所以如果樣本屬性有關聯時其效果不好。
那麼樸素貝葉斯應用領域是什麼呢?其實樸素貝葉斯演算法在欺詐檢測中使用較多。當然,我們還可以用樸素貝葉斯演算法來決定一封電子郵件是否是垃圾郵件。還可以用樸素貝葉斯演算法判斷一篇文章應該的類別,同時也能夠使用貝葉斯演算法去判斷一段文字表達的是積極的情緒還是消極的情緒。從中我們可以看出樸素貝葉斯演算法是一個十分實用的演算法。
在這篇文章中我們給大家介紹了關於樸素貝葉斯演算法優缺點的相關知識,通過對這些知識的講解相信大家已經對樸素貝葉斯演算法有了一定的了解,希望這篇文章能夠幫助大家。
⑹ 貝葉斯演算法是什麼
貝葉斯演算法是統計學的一種分類方法,它是一類利用概率統計知識進行分類的演算法。在許多場合,樸素貝葉斯(Naïve Bayes,NB)分類演算法可以與決策樹和神經網路分類演算法相媲美,該演算法能運用到大型資料庫中,而且方法簡單、分類准確率高、速度快。
由於貝葉斯定理假設一個屬性值對給定類的影響獨立於其它屬性的值,而此假設在實際情況中經常是不成立的,因此其分類准確率可能會下降。為此,就衍生出許多降低獨立性假設的貝葉斯分類演算法,如TAN(tree augmented Bayes network)演算法。
貝葉斯演算法的主要步驟:
1、收集大量的垃圾郵件和非垃圾郵件,建立垃圾郵件集和非垃圾郵件集。
2、提取郵件主題和郵件體中的獨立字元串,例如ABC32,¥234等作為TOKEN串並統計提取出的TOKEN串出現的次數即字頻。按照上述的方法分別處理垃圾郵件集和非垃圾郵件集中的所有郵件。
3、每一個郵件集對應一個哈希表,hashtable_good對應非垃圾郵件集而hashtable_bad對應垃圾郵件集。表中存儲TOKEN串到字頻的映射關系。
⑺ 請比較k近鄰,決策樹和樸素貝葉斯這三種分類演算法之間的異同點
決策樹演算法主要包括id3,c45,cart等演算法,生成樹形決策樹,而樸素貝葉斯是利用貝葉斯定律,根據先驗概率求算後驗概率。
如果訓練集很小,那麼高偏差/低方差分類器(如樸素貝葉斯分類器)要優於低偏差/高方差分類器(如k近鄰分類器),因為後者容易過擬合。然而,隨著訓練集的增大,低偏差/高方差分類器將開始勝出(它們具有較低的漸近誤差),因為高偏差分類器不足以提供准確的模型。
一些特定演算法的優點:
樸素貝葉斯的優點:
超級簡單,你只是在做一串計算。如果樸素貝葉斯(NB)條件獨立性假設成立,相比於邏輯回歸這類的判別模型,樸素貝葉斯分類器將收斂得更快,所以只需要較小的訓練集。而且,即使NB假設不成立,樸素貝葉斯分類器在實踐方面仍然表現很好。
如果想得到簡單快捷的執行效果,這將是個好的選擇。它的主要缺點是,不能學習特徵之間的相互作用(比如,它不能學習出:雖然你喜歡布拉德·皮特和湯姆·克魯斯的電影,但卻不喜歡他們一起合作的電影)。
邏輯回歸的優點:
有許多正則化模型的方法,不需要像在樸素貝葉斯分類器中那樣擔心特徵間的相互關聯性。與決策樹和支撐向量機不同,還可以有一個很好的概率解釋,並能容易地更新模型來吸收新數據(使用一個在線梯度下降方法)。
如果想要一個概率框架(比如,簡單地調整分類閾值,說出什麼時候是不太確定的,或者獲得置信區間),或你期望未來接收更多想要快速並入模型中的訓練數據,就選擇邏輯回歸。
決策樹的優點:
易於說明和解釋(對某些人來說—我不確定自己是否屬於這個陣營)。它們可以很容易地處理特徵間的相互作用,並且是非參數化的,所以你不用擔心異常值或者數據是否線性可分(比如,決策樹可以很容易地某特徵x的低端是類A,中間是類B,然後高端又是類A的情況)。
一個缺點是,不支持在線學習,所以當有新樣本時,你將不得不重建決策樹。另一個缺點是,容易過擬合,但這也正是諸如隨機森林(或提高樹)之類的集成方法的切入點。另外,隨機森林往往是很多分類問題的贏家(我相信通常略優於支持向量機),它們快速並且可擴展,同時你不須擔心要像支持向量機那樣調一堆參數,所以它們最近似乎相當受歡迎。
(7)關於樸素貝葉斯分類演算法擴展閱讀:
樸素貝葉斯演算法:
設每個數據樣本用一個n維特徵向量來描述n個屬性的值,即:X={x1,x2,…,xn},假定有m個類,分別用C1, C2,…,Cm表示。給定一個未知的數據樣本X(即沒有類標號),若樸素貝葉斯分類法將未知的樣本X分配給類Ci,則一定是
P(Ci|X)>P(Cj|X) 1≤j≤m,j≠i
根據貝葉斯定理:
由於P(X)對於所有類為常數,最大化後驗概率P(Ci|X)可轉化為最大化先驗概率P(X|Ci)P(Ci)。如果訓練數據集有許多屬性和元組,計算P(X|Ci)的開銷可能非常大,為此,通常假設各屬性的取值互相獨立,這樣
先驗概率P(x1|Ci),P(x2|Ci),…,P(xn|Ci)可以從訓練數據集求得。
根據此方法,對一個未知類別的樣本X,可以先分別計算出X屬於每一個類別Ci的概率P(X|Ci)P(Ci),然後選擇其中概率最大的類別作為其類別。
樸素貝葉斯演算法成立的前提是各屬性之間互相獨立。當數據集滿足這種獨立性假設時,分類的准確度較高,否則可能較低。另外,該演算法沒有分類規則輸出。
TAN演算法(樹增強型樸素貝葉斯演算法)
TAN演算法通過發現屬性對之間的依賴關系來降低NB中任意屬性之間獨立的假設。它是在NB網路結構的基礎上增加屬性對之間的關聯(邊)來實現的。
實現方法是:用結點表示屬性,用有向邊表示屬性之間的依賴關系,把類別屬性作為根結點,其餘所有屬性都作為它的子節點。通常,用虛線代表NB所需的邊,用實線代表新增的邊。屬性Ai與Aj之間的邊意味著屬性Ai對類別變數C的影響還取決於屬性Aj的取值。
這些增加的邊需滿足下列條件:類別變數沒有雙親結點,每個屬性有一個類別變數雙親結點和最多另外一個屬性作為其雙親結點。
⑻ 想了解機器學習,需要知道哪些基礎演算法
⑼ 如何理解半監督的樸素貝葉斯分類演算法
為了測試評估貝葉斯分類器的性能,用不同數據集進行對比實驗是必不可少的. 現有的貝葉斯網路實驗軟體包都是針對特定目的設計的,不能滿足不同研究的需要. 介紹了用Matlab在BNT軟體包基礎上建構的貝葉斯分類器實驗平台MBNC,闡述了MBNC的系統結構和主要功能,以及在MBNC上建立的樸素貝葉斯分類器NBC,基於互信息和條件互信息測度的樹擴展的貝葉斯分類器TANC,基於K2演算法和GS演算法的貝葉斯網路分類器BNC. 用來自UCI的標准數據集對MBNC進行測試,實驗結果表明基於MBNC所建構的貝葉斯分類器的性能優於國外同類工作的結果,編程量大大小於使用同類的實驗軟體包,所建立的MBNC實驗平台工作正確、有效、穩定. 在MBNC上已經進行貝葉斯分類器的優化和改進實驗,以及處理缺失數據等研究工作