❶ FFT的公式是什麼和演算法是怎樣實現
二維FFT相當於對行和列分別進行一維FFT運算。具體的實現辦法如下:
先對各行逐一進行一維FFT,然後再對變換後的新矩陣的各列逐一進行一維FFT。相應的偽代碼如下所示:
for (int i=0; i<M; i++)
FFT_1D(ROW[i],N);
for (int j=0; j<N; j++)
FFT_1D(COL[j],M);
其中,ROW[i]表示矩陣的第i行。注意這只是一個簡單的記法,並不能完全照抄。還需要通過一些語句來生成各行的數據。同理,COL[i]是對矩陣的第i列的一種簡單表示方法。
所以,關鍵是一維FFT演算法的實現。下面討論一維FFT的演算法原理。
【1D-FFT的演算法實現】
設序列h(n)長度為N,將其按下標的奇偶性分成兩組,即he和ho序列,它們的長度都是N/2。這樣,可以將h(n)的FFT計算公式改寫如下 :
(A)
由於
所以,(A)式可以改寫成下面的形式:
按照FFT的定義,上面的式子實際上是:
其中,k的取值范圍是 0~N-1。
我們注意到He(k)和Ho(k)是N/2點的DFT,其周期是N/2。因此,H(k)DFT的前N/2點和後N/2點都可以用He(k)和Ho(k)來表示
❷ FFT的原理,怎樣分析出頻率的,越詳細越好
FFT是一種DFT的高效演算法,稱為快速傅立葉變換(fast
Fourier
transform)。FFT演算法可分為按時間抽取演算法和按頻率抽取演算法,先簡要介紹FFT的基本原理。從DFT運算開始,說明FFT的基本原理。DFT的運算為:式中由這種方法計算DFT對於X(K)的每個K值
❸ FFT , DTFT, DFT 的區別和聯系
FFT ,DTFT,DFT的聯系:FFT是DFT的一種高效快速演算法,DFT是有限長序列的離散傅里葉變換,DTFT是非周期序列的傅里葉變換,DFT將信號的時域采樣變換為其DTFT的頻域采樣。
FFT , DTFT, DFT 的區別是含義不同、性質不同、用途不同。
1、含義不同:DTFT是離散時間傅里葉變換,DFT是離散傅里葉變換,FFT是DFT的一種高效快速演算法,也稱作快速傅里葉變換。
2、性質不同:DTFT變換後的圖形中的頻率是一般連續的(cos(wn)等這樣的特殊函數除外,其變換後是沖擊串),而DFT是DTFT的等間隔抽樣,是離散的點。
快速傅里葉變換FFT其實是一種對離散傅里葉變換的快速演算法,它的出現解決了離散傅里葉變換的計算量極大、不實用的問題,使離散傅里葉變換的計算量降低了 一個或幾個數量級,從而使離散傅里葉變換得到了廣泛應用。
3、用途不同:DFT完全是應計算機技術的發展而來的,因為如果沒有計算機,用DTFT分析看頻率響應就可以,為了適應計算機計算,那麼就必須要用離散的值,因為計算機不能處理連續的值,FFT是為了提高速度而來。另外,FFT的出現也解決了相當多的計算問題,使得其它計算也可以通過FFT來解決。
(3)fft演算法心率擴展閱讀
DTFT是以2pi為周期的。而DFT的序列X(k)是有限長的。
DTFT是以復指數序列{exp(-jwn)}的加權和來表示的,而DFT是等間隔抽樣,DFT裡面有個重要的參數就是N,抽樣間隔就是將單位元分成N個間隔來抽樣,繞圓一周,(2*pi)/N是間隔(一個圓周是2*pi,分成N個等分)
DTFT和DFT都能表徵原序列的信息。因為現在計算主要使用計算機,必需要是離散的值才能參與運算,因此在工程中DFT應用比較廣泛,DFT還有一個快速演算法,那就是FFT。
❹ 如何理解FFT
fft在matlab中可以按原理采樣來運算,也可以用快速fft演算法。
clear
fs=1000
t=0:1/fs:0.6;
f1=100;
f2=300;
x=sin(2*pi*f1*t)+sin(2*pi*f2*t);
subplot(711)
plot(x);
title('f1(100Hz)\f2(300Hz)的正弦信號,初相0')
xlabel('序列(n)')
grid on
number=512
y=fft(x,number);
n=0:length(y)-1;
f=fs*n/length(y);
subplot(713)
plot(f,abs(y));
title('f1\f2的正弦信號的FFT(512點)')
xlabel('頻率Hz')
grid on
x=x+randn(1,length(x));
subplot(715)
plot(x);
title('原f1\f2的正弦信號(含隨機雜訊)')
xlabel('序列(n)')
grid on
y=fft(x,number);
n=0:length(y)-1;
f=fs*n/length(y);
subplot(717)
plot(f,abs(y));
title('原f1\f2的正弦信號(含隨機雜訊)的FFT(512點)')
xlabel('頻率Hz')
grid on
❺ FFT演算法的基本思想是什麼
基本思想就是分而治之(divide and conquer)
❻ FFT演算法分幾種
FFT演算法分析FFT演算法的基本原理是把長序列的DFT逐次分解為較短序列的DFT。按照抽取方式的不同可分為DIT-FFT(按時間抽取)和DIF-FFT(按頻率抽取)演算法。按照蝶形運算的構成不同可分為基2、基4、基8以及任意因子(2n,n為大於1的整數),基2、基4演算法較為常用。 網上有幫助文檔: http://www.5doc.com/doc/123035(右上角有點擊下載)
❼ FFT的演算法
FFT是一種DFT的高效演算法,稱為快速傅立葉變換(fast Fourier transform),它根據離散傅氏變換的奇、偶、虛、實等特性,對離散傅立葉變換的演算法進行改進獲得的。FFT演算法可分為按時間抽取演算法和按頻率抽取演算法,先簡要介紹FFT的基本原理。從DFT運算開始,說明FFT的基本原理。
DFT的運算為:
式中
由這種方法計算DFT對於 的每個K值,需要進行4N次實數相乘和(4N-2)次相加,對於N個k值,共需4N*4N次實數相乘和(4N-2)(4N-2)次實數相加。改進DFT演算法,減小它的運算量,利用DFT中 的周期性和對稱性,使整個DFT的計算變成一系列迭代運算,可大幅度提高運算過程和運算量,這就是FFT的基本思想。
FFT對傅氏變換的理論並沒有新的發現,但是對於在計算機系統或者說數字系統中應用離散傅立葉變換,可以說是進了一大步。
設x(n)為N項的復數序列,由DFT變換,任一X(m)的計算都需要N次復數乘法和N-1次復數加法,而一次復數乘法等於四次實數乘法和兩次實數加法,一次復數加法等於兩次實數加法,即使把一次復數乘法和一次復數加法定義成一次「運算」(四次實數乘法和四次實數加法),那麼求出N項復數序列的X(m),即N點DFT變換大約就需要N^2次運算。當N=1024點甚至更多的時候,需要N2=1048576次運算,在FFT中,利用WN的周期性和對稱性,把一個N項序列(設N=2k,k為正整數),分為兩個N/2項的子序列,每個N/2點DFT變換需要(N/2)2次運算,再用N次運算把兩個N/2點的DFT變換組合成一個N點的DFT變換。這樣變換以後,總的運算次數就變成N+2*(N/2)^2=N+(N^2)/2。繼續上面的例子,N=1024時,總的運算次數就變成了525312次,節省了大約50%的運算量。而如果我們將這種「一分為二」的思想不斷進行下去,直到分成兩兩一組的DFT運算單元,那麼N點的DFT變換就只需要Nlog2N次的運算,N在1024點時,運算量僅有10240次,是先前的直接演算法的1%,點數越多,運算量的節約就越大,這就是FFT的優越性。
❽ 什麼是FFT
計算離散傅里葉變換的一種快速演算法,簡稱FFT(Fast Fourier Transform)。快速傅里葉變換是1965年由J.W.庫利和T.W.圖基提出的。採用這種演算法能使計算機計算離散傅里葉變換所需要的乘法次數大為減少,特別是被變換的抽樣點數N越多,FFT演算法計算量的節省就越顯著。
FFT 的出現,使信號分析從時域分析向頻域分析成為可能,極大地推動了信號分析在各領域的實際應用。
http://ke..com/view/1006229.htm
❾ FFT演算法得到的結果的物理意義是什麼
FFT本沒有意義 他只不過是DFT的快速演算法 知道DFT的意義就行了 至於FFT 知道他怎麼算就行了 算出各次協波的幅值
FFT得到的結果橫坐標中每格為fs/N 電腦不可能算那麼細 肯定也是采樣 然後估算的那麼多點 最終呈現一副完整的頻譜
❿ FFT原理的FFT基本原理
FFT是一種DFT的高效演算法,稱為快速傅立葉變換(fast Fourier transform)。FFT演算法可分為按時間抽取演算法和按頻率抽取演算法,先簡要介紹FFT的基本原理。從DFT運算開始,說明FFT的基本原理。
DFT的運算為:
式中
由這種方法計算DFT對於X(K)的每個K值,需要進行4N次實數相乘和(4N-2)次相加,對於N個k值,共需N*N乘和N(4N-2)次實數相加。改進DFT演算法,減小它的運算量,利用DFT中
的周期性和對稱性,使整個DFT的計算變成一系列迭代運算,可大幅度提高運算過程和運算量,這就是FFT的基本思想。
FFT基本上可分為兩類,時間抽取法和頻率抽取法,而一般的時間抽取法和頻率抽取法只能處理長度N=2^M的情況,另外還有組合數基四FFT來處理一般長度的FFT 設N點序列x(n),,將x(n)按奇偶分組,公式如下圖
改寫為:
一個N點DFT分解為兩個 N/2點的DFT,繼續分解,迭代下去,其運算量約為
其演算法有如下規律
兩個4點組成的8點DFT
四個2點組成的8點DFT
按時間抽取的8點DFT
原位計算
當數據輸入到存儲器中以後,每一級運算的結果仍然儲存在同一組存儲器中,直到最後輸出,中間無需其它存儲器
序數重排
對按時間抽取FFT的原位運算結構,當運算完畢時,這種結構存儲單元A(1)、A(2),…,A(8)中正好順序存放著X(0),X(1),X(2),…,X(7),因此可直接按順序輸出,但這種原位運算的輸入x(n)卻不能按這種自然順序存入存儲單元中,而是按X(0),X(4),X(2),X(6),…,X(7)的順序存入存儲單元,這種順序看起來相當雜亂,然而它也是有規律的。當用二進製表示這個順序時,它正好是「碼位倒置」的順序。
蝶形類型隨迭代次數成倍增加
每次迭代的蝶形類型比上一次蝶代增加一倍,數據點間隔也增大一倍 頻率抽取2FFT演算法是按頻率進行抽取的演算法。
設N=2^M,將x(n)按前後兩部分進行分解,
按K的奇偶分為兩組,即
得到兩個N/2 點的DFT運算。如此分解,並迭代,總的計算量和時間抽取(DIT)基2FFT演算法相同。
演算法規律如下:
蝶形結構和時間抽取不一樣但是蝶形個數一樣,同樣具有原位計算規律,其迭代次數成倍減小 時,可採取補零使其成為
,或者先分解為兩個p,q的序列,其中p*q=N,然後進行計算。 前面介紹,採用FFT演算法可以很快算出全部N點DFT值,即z變換X(z)在z平面單位圓上的全部等間隔取樣值。實際中也許①不需要計算整個單位圓上z變換的取樣,如對於窄帶信號,只需要對信號所在的一段頻帶進行分析,這時希望頻譜的采樣集中在這一頻帶內,以獲得較高的解析度,而頻帶以外的部分可不考慮,②或者對其它圍線上的z變換取樣感興趣,例如語音信號處理中,需要知道z變換的極點所在頻率,如極點位置離單位圓較遠,則其單位圓上的頻譜就很平滑,這時很難從中識別出極點所在的頻率,如果采樣不是沿單位圓而是沿一條接近這些極點的弧線進行,則在極點所在頻率上的頻譜將出現明顯的尖峰,由此可較准確地測定極點頻率。③或者要求能有效地計算當N是素數時序列的DFT,因此提高DFT計算的靈活性非常有意義。
螺旋線采樣是一種適合於這種需要的變換,且可以採用FFT來快速計算,這種變換也稱作Chirp-z變換。