Ⅰ 數據結構有哪些基本演算法
數據結構是一門研究非數值計算的程序設計問題中的操作對象,以及它們之間的關系和操作等相關問題的學科。
可以理解為:程序設計 = 數據結構 + 演算法
數據結構演算法具有五個基本特徵:輸入、輸出、有窮性、確定性和可行性。
1、輸入:一個演算法具有零個或者多個輸出。以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件。後面一句話翻譯過來就是,如果一個演算法本身給出了初始條件,那麼可以沒有輸出。比如,列印一句話:NSLog(@"你最牛逼!");
2、輸出:演算法至少有一個輸出。也就是說,演算法一定要有輸出。輸出的形式可以是列印,也可以使返回一個值或者多個值等。也可以是顯示某些提示。
3、有窮性:演算法的執行步驟是有限的,演算法的執行時間也是有限的。
4、確定性:演算法的每個步驟都有確定的含義,不會出現二義性。
5、可行性:演算法是可用的,也就是能夠解決當前問題。
數據結果的基本演算法有:
1、圖搜索(廣度優先、深度優先)深度優先特別重要
2、排序
3、動態規劃
4、匹配演算法和網路流演算法
5、正則表達式和字元串匹配
6、三路劃分-快速排序
7、合並排序(更具擴展性,復雜度類似快速排序)
8、DF/BF 搜索 (要知道使用場景)
9、Prim / Kruskal (最小生成樹)
10、Dijkstra (最短路徑演算法)
11、選擇演算法
Ⅱ 數據結構的排序方法有哪些
冒泡排序,快速排序,堆排序。
Ⅲ 數據的演算法都有哪些……
A*搜尋演算法
俗稱A星演算法。這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的 NPC的移動計算,或線上游戲的 BOT的移動計算上。該演算法像 Dijkstra演算法一樣,可以找到一條最短路徑;也像BFS一樣,進行啟發式的搜索。
Beam Search
束搜索(beam search)方法是解決優化問題的一種啟發式方法,它是在分枝定界方法基礎上發展起來的,它使用啟發式方法估計k個最好的路徑,僅從這k個路徑出發向下搜索,即每一層只有滿意的結點會被保留,其它的結點則被永久拋棄,從而比分枝定界法能大大節省運行時間。束搜索於20 世紀70年代中期首先被應用於 人工智慧領域,1976 年Lowerre在其稱為 HARPY的語音識別系統中第一次使用了束搜索方法。他的目標是並行地搜索幾個潛在的最優決策路徑以減少回溯,並快速地獲得一個解。
二分取中查找演算法
一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。這種搜索演算法每一次比較都使搜索范圍縮小一半。
Branch and bound
分支定界演算法是一種在問題的解空間樹上搜索問題的解的方法。但與回溯演算法不同,分支定界演算法採用廣度優先或最小耗費優先的方法搜索解空間樹,並且,在分支定界演算法中,每一個活結點只有一次機會成為擴展結點。
數據壓縮
數據壓縮是通過減少計算機中所存儲數據或者通信傳播中數據的冗餘度,達到增大數據密度,最終使數據的存儲空間減少的技術。數據壓縮在文件存儲和分布式系統領域有著十分廣泛的應用。數據壓縮也代表著尺寸媒介容量的增大和網路帶寬的擴展。
Diffie–Hellman密鑰協商
Diffie–Hellman key exchange,簡稱「D–H」,是一種安全協議。它可以讓雙方在完全沒有對方任何預先信息的條件下通過不安全信道建立起一個密鑰。這個密鑰可以在後續的通訊中作為對稱密鑰來加密通訊內容。
Dijkstra』s 演算法
迪科斯徹演算法(Dijkstra)是由荷蘭計算機科學家艾茲格·迪科斯徹發明的。演算法解決的是有向圖中單個源點到其他頂點的最短路徑問題。舉例來說,如果圖中的頂點表示城市,而邊上的權重表示著城市間開車行經的距離,迪科斯徹演算法可以用來找到兩個城市之間的最短路徑。
動態規劃
動態規劃是一種在 數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。 動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。比較著名的應用實例有:求解最短路徑問題,背包問題,項目管理,網路流優化等。這里也有一篇文章說得比較詳細。
歐幾里得演算法
在 數學中,輾轉相除法,又稱 歐幾里得演算法,是求 最大公約數的演算法。輾轉相除法首次出現於 歐幾里得的《幾何原本》(第VII卷,命題i和ii)中,而在中國則可以追溯至 東漢出現的《九章算術》。
快速傅里葉變換(FFT)
快速傅里葉變換(Fast Fourier Transform,FFT),是離散傅里葉變換的快速演算法,也可用於計算離散傅里葉變換的逆變換。快速傅里葉變換有廣泛的應用,如數字信號處理、計算大整數乘法、求解偏微分方程等等。
哈希函數
HashFunction是一種從任何一種數據中創建小的數字「指紋」的方法。該 函數將數據打亂混合,重新創建一個叫做散列值的指紋。散列值通常用來代表一個短的隨機字母和數字組成的字元串。好的散列 函數在輸入域中很少出現散列沖突。在散列表和數據處理中,不抑制沖突來區別數據,會使得資料庫記錄更難找到。
堆排序
Heapsort是指利用堆積樹(堆)這種 數據結構所設計的一種排序演算法。堆積樹是一個近似完全二叉樹的結構,並同時滿足堆積屬性:即子結點的鍵值或索引總是小於(或者大於)它的父結點。
歸並排序
Merge sort是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
RANSAC 演算法
RANSAC 是」RANdom SAmpleConsensus」的縮寫。該演算法是用於從一組觀測數據中估計 數學模型參數的迭代方法,由Fischler and Bolles在1981提出,它是一種非確定性演算法,因為它只能以一定的概率得到合理的結果,隨著迭代次數的增加,這種概率是增加的。該演算法的基本假設是觀測數據集中存在」inliers」(那些對模型參數估計起到支持作用的點)和」outliers」(不符合模型的點),並且這組觀測數據受到雜訊影響。RANSAC 假設給定一組」inliers」數據就能夠得到最優的符合這組點的模型。
RSA加密演演算法
這是一個公鑰加密演算法,也是世界上第一個適合用來做簽名的演算法。今天的RSA已經 專利失效,其被廣泛地用於 電子商務加密,大家都相信,只要密鑰足夠長,這個演算法就會是安全的。
並查集Union-find
並查集是一種樹型的 數據結構,用於處理一些不相交集合(Disjoint Sets)的合並及查詢問題。常常在使用中以森林來表示。
Viterbi algorithm
尋找最可能的隱藏狀態序列
等等這些,演算法很多。
Ⅳ 常用的數據排序演算法有哪些,各有什麼特點舉例結合一種排序演算法並應用數組進行數據排序。
排序簡介
排序是數據處理中經常使用的一種重要運算,在計算機及其應用系統中,花費在排序上的時間在系統運行時間中佔有很大比重;並且排序本身對推動演算法分析的發展也起很大作用。目前已有上百種排序方法,但尚未有一個最理想的盡如人意的方法,本章介紹常用的如下排序方法,並對它們進行分析和比較。
1、插入排序(直接插入排序、折半插入排序、希爾排序);
2、交換排序(起泡排序、快速排序);
3、選擇排序(直接選擇排序、堆排序);
4、歸並排序;
5、基數排序;
學習重點
1、掌握排序的基本概念和各種排序方法的特點,並能加以靈活應用;
2、掌握插入排序(直接插入排序、折半插入排序、希爾排序)、交換排序(起泡排序、快速排序)、選擇排序(直接選擇排序、堆排序)、二路歸並排序的方法及其性能分析方法;
3、了解基數排序方法及其性能分析方法。
排序(sort)或分類
所謂排序,就是要整理文件中的記錄,使之按關鍵字遞增(或遞減)次序排列起來。其確切定義如下:
輸入:n個記錄R1,R2,…,Rn,其相應的關鍵字分別為K1,K2,…,Kn。
輸出:Ril,Ri2,…,Rin,使得Ki1≤Ki2≤…≤Kin。(或Ki1≥Ki2≥…≥Kin)。
1.被排序對象--文件
被排序的對象--文件由一組記錄組成。
記錄則由若干個數據項(或域)組成。其中有一項可用來標識一個記錄,稱為關鍵字項。該數據項的值稱為關鍵字(Key)。
注意:
在不易產生混淆時,將關鍵字項簡稱為關鍵字。
2.排序運算的依據--關鍵字
用來作排序運算依據的關鍵字,可以是數字類型,也可以是字元類型。
關鍵字的選取應根據問題的要求而定。
【例】在高考成績統計中將每個考生作為一個記錄。每條記錄包含准考證號、姓名、各科的分數和總分數等項內容。若要惟一地標識一個考生的記錄,則必須用"准考證號"作為關鍵字。若要按照考生的總分數排名次,則需用"總分數"作為關鍵字。
排序的穩定性
當待排序記錄的關鍵字均不相同時,排序結果是惟一的,否則排序結果不唯一。
在待排序的文件中,若存在多個關鍵字相同的記錄,經過排序後這些具有相同關鍵字的記錄之間的相對次序保持不變,該排序方法是穩定的;若具有相同關鍵字的記錄之間的相對次序發生變化,則稱這種排序方法是不穩定的。
注意:
排序演算法的穩定性是針對所有輸入實例而言的。即在所有可能的輸入實例中,只要有一個實例使得演算法不滿足穩定性要求,則該排序演算法就是不穩定的。
排序方法的分類
1.按是否涉及數據的內、外存交換分
在排序過程中,若整個文件都是放在內存中處理,排序時不涉及數據的內、外存交換,則稱之為內部排序(簡稱內排序);反之,若排序過程中要進行數據的內、外存交換,則稱之為外部排序。
注意:
① 內排序適用於記錄個數不很多的小文件
② 外排序則適用於記錄個數太多,不能一次將其全部記錄放人內存的大文件。
2.按策略劃分內部排序方法
可以分為五類:插入排序、選擇排序、交換排序、歸並排序和分配排序。
排序演算法分析
1.排序演算法的基本操作
大多數排序演算法都有兩個基本的操作:
(1) 比較兩個關鍵字的大小;
(2) 改變指向記錄的指針或移動記錄本身。
注意:
第(2)種基本操作的實現依賴於待排序記錄的存儲方式。
2.待排文件的常用存儲方式
(1) 以順序表(或直接用向量)作為存儲結構
排序過程:對記錄本身進行物理重排(即通過關鍵字之間的比較判定,將記錄移到合適的位置)
(2) 以鏈表作為存儲結構
排序過程:無須移動記錄,僅需修改指針。通常將這類排序稱為鏈表(或鏈式)排序;
(3) 用順序的方式存儲待排序的記錄,但同時建立一個輔助表(如包括關鍵字和指向記錄位置的指針組成的索引表)
排序過程:只需對輔助表的表目進行物理重排(即只移動輔助表的表目,而不移動記錄本身)。適用於難於在鏈表上實現,仍需避免排序過程中移動記錄的排序方法。
3.排序演算法性能評價
(1) 評價排序演算法好壞的標准
評價排序演算法好壞的標准主要有兩條:
① 執行時間和所需的輔助空間
② 演算法本身的復雜程度
(2) 排序演算法的空間復雜度
若排序演算法所需的輔助空間並不依賴於問題的規模n,即輔助空間是O(1),則稱之為就地排序(In-PlaceSou)。
非就地排序一般要求的輔助空間為O(n)。
(3) 排序演算法的時間開銷
大多數排序演算法的時間開銷主要是關鍵字之間的比較和記錄的移動。有的排序演算法其執行時間不僅依賴於問題的規模,還取決於輸入實例中數據的狀態。
文件的順序存儲結構表示
#define n l00 //假設的文件長度,即待排序的記錄數目
typedef int KeyType; //假設的關鍵字類型
typedef struct{ //記錄類型
KeyType key; //關鍵字項
InfoType otherinfo;//其它數據項,類型InfoType依賴於具體應用而定義
}RecType;
typedef RecType SeqList[n+1];//SeqList為順序表類型,表中第0個單元一般用作哨兵
注意:
若關鍵字類型沒有比較算符,則可事先定義宏或函數來表示比較運算。
【例】關鍵字為字元串時,可定義宏"#define LT(a,b)(Stromp((a),(b))<0)"。那麼演算法中"a<b"可用"LT(a,b)"取代。若使用C++,則定義重載的算符"<"更為方便。
按平均時間將排序分為四類:
(1)平方階(O(n2))排序
一般稱為簡單排序,例如直接插入、直接選擇和冒泡排序;
(2)線性對數階(O(nlgn))排序
如快速、堆和歸並排序;
(3)O(n1+£)階排序
£是介於0和1之間的常數,即0<£<1,如希爾排序;
(4)線性階(O(n))排序
如桶、箱和基數排序。
各種排序方法比較
簡單排序中直接插入最好,快速排序最快,當文件為正序時,直接插入和冒泡均最佳。
影響排序效果的因素
因為不同的排序方法適應不同的應用環境和要求,所以選擇合適的排序方法應綜合考慮下列因素:
①待排序的記錄數目n;
②記錄的大小(規模);
③關鍵字的結構及其初始狀態;
④對穩定性的要求;
⑤語言工具的條件;
⑥存儲結構;
⑦時間和輔助空間復雜度等。
不同條件下,排序方法的選擇
(1)若n較小(如n≤50),可採用直接插入或直接選擇排序。
當記錄規模較小時,直接插入排序較好;否則因為直接選擇移動的記錄數少於直接插人,應選直接選擇排序為宜。
(2)若文件初始狀態基本有序(指正序),則應選用直接插人、冒泡或隨機的快速排序為宜;
(3)若n較大,則應採用時間復雜度為O(nlgn)的排序方法:快速排序、堆排序或歸並排序。
快速排序是目前基於比較的內部排序中被認為是最好的方法,當待排序的關鍵字是隨機分布時,快速排序的平均時間最短;
堆排序所需的輔助空間少於快速排序,並且不會出現快速排序可能出現的最壞情況。這兩種排序都是不穩定的。
若要求排序穩定,則可選用歸並排序。但本章介紹的從單個記錄起進行兩兩歸並的 排序演算法並不值得提倡,通常可以將它和直接插入排序結合在一起使用。先利用直接插入排序求得較長的有序子文件,然後再兩兩歸並之。因為直接插入排序是穩定的,所以改進後的歸並排序仍是穩定的。
4)在基於比較的排序方法中,每次比較兩個關鍵字的大小之後,僅僅出現兩種可能的轉移,因此可以用一棵二叉樹來描述比較判定過程。
當文件的n個關鍵字隨機分布時,任何藉助於"比較"的排序演算法,至少需要O(nlgn)的時間。
箱排序和基數排序只需一步就會引起m種可能的轉移,即把一個記錄裝入m個箱子之一,因此在一般情況下,箱排序和基數排序可能在O(n)時間內完成對n個記錄的排序。但是,箱排序和基數排序只適用於像字元串和整數這類有明顯結構特徵的關鍵字,而當關鍵字的取值范圍屬於某個無窮集合(例如實數型關鍵字)時,無法使用箱排序和基數排序,這時只有藉助於"比較"的方法來排序。
若n很大,記錄的關鍵字位數較少且可以分解時,採用基數排序較好。雖然桶排序對關鍵字的結構無要求,但它也只有在關鍵字是隨機分布時才能使平均時間達到線性階,否則為平方階。同時要注意,箱、桶、基數這三種分配排序均假定了關鍵字若為數字時,則其值均是非負的,否則將其映射到箱(桶)號時,又要增加相應的時間。
(5)有的語言(如Fortran,Cobol或Basic等)沒有提供指針及遞歸,導致實現歸並、快速(它們用遞歸實現較簡單)和基數(使用了指針)等排序演算法變得復雜。此時可考慮用其它排序。
(6)本章給出的排序演算法,輸人數據均是存儲在一個向量中。當記錄的規模較大時,為避免耗費大量的時間去移動記錄,可以用鏈表作為存儲結構。譬如插入排序、歸並排序、基數排序都易於在鏈表上實現,使之減少記錄的移動次數。但有的排序方法,如快速排序和堆排序,在鏈表上卻難於實現,在這種情況下,可以提取關鍵字建立索引表,然後對索引表進行排序。然而更為簡單的方法是:引人一個整型向量t作為輔助表,排序前令t[i]=i(0≤i<n),若排序演算法中要求交換R[i]和R[j],則只需交換t[i]和t[j]即可;排序結束後,向量t就指示了記錄之間的順序關系:
R[t[0]].key≤R[t[1]].key≤…≤R[t[n-1]].key
若要求最終結果是:
R[0].key≤R[1].key≤…≤R[n-1].key
則可以在排序結束後,再按輔助表所規定的次序重排各記錄,完成這種重排的時間是O(n)。
Ⅳ 常用的排序演算法有哪些
排序另一種分法
外排序:需要在內外存之間多次交換數據才能進行
內排序:
插入類排序
直接插入排序
希爾排序
選擇類排序
簡單選擇排序
堆排序
交換類排序
冒泡排序
快速排序
歸並類排序
歸並排序
Ⅵ 常用的數據挖掘演算法有哪幾類
常用的數據挖掘演算法分為以下幾類:神經網路,遺傳演算法,回歸演算法,聚類分析演算法,貝耶斯演算法。
目前已經進入大數據的時代,所以數據挖掘和大數據分析的就業前景非常好,學好大數據分析和數據挖掘可以在各個領域中發揮自己的價值;同時,大數據分析並不是一蹴而就的事情,而是需要你日積月累的數據處理經驗,不是會被輕易替代的。一家公司的各項工作,基本上都都用數據體現出來,一位高級的數據分析師職位通常是數據職能架構中領航者,擁有較高的分析和思辨能力,對於業務的理解到位,並且深度知曉公司的管理和商業行為,他可以負責一個子產品或模塊級別的項目,帶領團隊來全面解決問題,把控手下數據分析師的工作質量。
想要了解更多有關數據挖掘演算法的信息,可以了解一下CDA數據分析師的課程。課程教你學企業需要的敏捷演算法建模能力,可以學到前沿且實用的技術,挖掘數據的魅力;教你用可落地、易操作的數據科學思維和技術模板構建出優秀模型,只教實用干貨,以專精技術能力提升業務效果與效率。點擊預約免費試聽課。
Ⅶ 排序演算法有多少種
排序(Sorting) 是計算機程序設計中的一種重要操作,它的功能是將一個數據元素(或記錄)的任意序列,重新排列成一個關鍵字有序的序列。
排序就是把集合中的元素按照一定的次序排序在一起。一般來說有升序排列和降序排列2種排序,在演算法中有8中基本排序:
(1)冒泡排序;
(2)選擇排序;
(3)插入排序;
(4)希爾排序;
(5)歸並排序;
(6)快速排序;
(7)基數排序;
(8)堆排序;
(9)計數排序;
(10)桶排序。
插入排序
插入排序演算法是基於某序列已經有序排列的情況下,通過一次插入一個元素的方式按照原有排序方式增加元素。這種比較是從該有序序列的最末端開始執行,即要插入序列中的元素最先和有序序列中最大的元素比較,若其大於該最大元素,則可直接插入最大元素的後面即可,否則再向前一位比較查找直至找到應該插入的位置為止。插入排序的基本思想是,每次將1個待排序的記錄按其關鍵字大小插入到前面已經排好序的子序列中,尋找最適當的位置,直至全部記錄插入完畢。執行過程中,若遇到和插入元素相等的位置,則將要插人的元素放在該相等元素的後面,因此插入該元素後並未改變原序列的前後順序。我們認為插入排序也是一種穩定的排序方法。插入排序分直接插入排序、折半插入排序和希爾排序3類。
冒泡排序
冒泡排序演算法是把較小的元素往前調或者把較大的元素往後調。這種方法主要是通過對相鄰兩個元素進行大小的比較,根據比較結果和演算法規則對該二元素的位置進行交換,這樣逐個依次進行比較和交換,就能達到排序目的。冒泡排序的基本思想是,首先將第1個和第2個記錄的關鍵字比較大小,如果是逆序的,就將這兩個記錄進行交換,再對第2個和第3個記錄的關鍵字進行比較,依次類推,重復進行上述計算,直至完成第(n一1)個和第n個記錄的關鍵字之間的比較,此後,再按照上述過程進行第2次、第3次排序,直至整個序列有序為止。排序過程中要特別注意的是,當相鄰兩個元素大小一致時,這一步操作就不需要交換位置,因此也說明冒泡排序是一種嚴格的穩定排序演算法,它不改變序列中相同元素之間的相對位置關系。
選擇排序
選擇排序演算法的基本思路是為每一個位置選擇當前最小的元素。選擇排序的基本思想是,基於直接選擇排序和堆排序這兩種基本的簡單排序方法。首先從第1個位置開始對全部元素進行選擇,選出全部元素中最小的給該位置,再對第2個位置進行選擇,在剩餘元素中選擇最小的給該位置即可;以此類推,重復進行「最小元素」的選擇,直至完成第(n-1)個位置的元素選擇,則第n個位置就只剩唯一的最大元素,此時不需再進行選擇。使用這種排序時,要注意其中一個不同於冒泡法的細節。舉例說明:序列58539.我們知道第一遍選擇第1個元素「5」會和元素「3」交換,那麼原序列中的兩個相同元素「5」之間的前後相對順序就發生了改變。因此,我們說選擇排序不是穩定的排序演算法,它在計算過程中會破壞穩定性。
快速排序
快速排序的基本思想是:通過一趟排序演算法把所需要排序的序列的元素分割成兩大塊,其中,一部分的元素都要小於或等於另外一部分的序列元素,然後仍根據該種方法對劃分後的這兩塊序列的元素分別再次實行快速排序演算法,排序實現的整個過程可以是遞歸的來進行調用,最終能夠實現將所需排序的無序序列元素變為一個有序的序列。
歸並排序
歸並排序演算法就是把序列遞歸劃分成為一個個短序列,以其中只有1個元素的直接序列或者只有2個元素的序列作為短序列的遞歸出口,再將全部有序的短序列按照一定的規則進行排序為長序列。歸並排序融合了分治策略,即將含有n個記錄的初始序列中的每個記錄均視為長度為1的子序列,再將這n個子序列兩兩合並得到n/2個長度為2(當凡為奇數時會出現長度為l的情況)的有序子序列;將上述步驟重復操作,直至得到1個長度為n的有序長序列。需要注意的是,在進行元素比較和交換時,若兩個元素大小相等則不必刻意交換位置,因此該演算法不會破壞序列的穩定性,即歸並排序也是穩定的排序演算法。
Ⅷ 演算法有哪些分類
演算法分類編輯演算法可大致分為:
基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
Ⅸ 除了經典和常用的排序演算法外,還有哪些奇葩而有趣的排序演算法
排序演算法有:
冒泡排序(bubble sort) — O(n^2)
雞尾酒排序(Cocktail sort,雙向的冒泡排序) — O(n^2)
插入排序(insertion sort)— O(n^2)
桶排序(bucket sort)— O(n); 需要 O(k) 額外空間
計數排序(counting sort) — O(n+k); 需要 O(n+k) 額外空間
合並排序(merge sort)— O(nlog n); 需要 O(n) 額外空間
原地合並排序— O(n^2)
二叉排序樹排序 (Binary tree sort) — O(nlog n)期望時間; O(n^2)最壞時間; 需要 O(n) 額外空間
鴿巢排序(Pigeonhole sort) — O(n+k); 需要 O(k) 額外空間
基數排序(radix sort)— O(n·k); 需要 O(n) 額外空間
Gnome 排序— O(n^2)
圖書館排序— O(nlog n) with high probability,需要 (1+ε)n額外空間
不穩定的
選擇排序(selection sort)— O(n^2)
希爾排序(shell sort)— O(nlog n) 如果使用最佳的現在版本
組合排序— O(nlog n)
堆排序(heapsort)— O(nlog n)
平滑排序— O(nlog n)
快速排序(quicksort)— O(nlog n) 期望時間,O(n^2) 最壞情況; 對於大的、亂數列表一般相信是最快的已知排序
Introsort— O(nlog n)
Patience sorting— O(nlog n+ k) 最壞情況時間,需要 額外的 O(n+ k) 空間,也需要找到最長的遞增子串列(longest increasing subsequence)
不實用的
Bogo排序— O(n× n!) 期望時間,無窮的最壞情況。
Stupid sort— O(n^3); 遞歸版本需要 O(n^2) 額外存儲器
珠排序(Bead sort) — O(n) or O(√n),但需要特別的硬體
Pancake sorting— O(n),但需要特別的硬體
stooge sort——O(n^2.7)很漂亮但是很耗時