導航:首頁 > 源碼編譯 > arm編譯器詳細信息列印

arm編譯器詳細信息列印

發布時間:2022-09-03 17:29:12

⑴ Makefile編譯時怎麼列印出變數值

其實androidndk上的編譯說到底也就是交叉編譯,只要配置好交叉編譯工具鏈,使用原有的makefile也是可以編譯出在android運行的c、c++程序的。以android-ndk-r4-crystax的ndk版本為例:編譯器路徑android-ndk-r4-crystax/build/prebuilt/linux-x86/arm-eabi-4.4.0/bin名稱前綴arm-eabi-頭文件目錄android-ndk-r4-crystax/build/platforms/android-3/arch-arm/usr/include庫文件目錄android-ndk-r4-crystax/build/platforms/android-3/arch-arm/usr/lib你可以試一下上面的配置,如果編譯鏈接都沒有問題,可以adbpush到android設備上運行看看,什麼結果?有點崩潰,根本運行不起來,你也許想試試看android自帶的ndk例子,確實是能夠運行的,問題在哪兒呢?只是正確配置了編譯器、頭文件、庫文件還不夠,還需要配置編譯、鏈接的參數,android例子中編譯鏈接的參數是什麼呢?你也許想深究一下android的makefile,可是不久你會發現那是更崩潰的事情,裡面用了很多的make腳本函數。其實android的makefile是可以把執行的詳細命令輸出來的,只要make的時候加上V=1即可。可以看到確實帶了很多參數編譯參數:-fpic-mthumb-interwork-ffunction-sections-funwind-tables-fstack-protector-fno-short-enums-Wno-psabi-march=armv5te-mtune=xscale-msoft-float-mthumb-fomit-frame-pointer-fno-strict-aliasing-finline-limit=64-Wa,--noexecstack-D__ARM_ARCH_5__-D__ARM_ARCH_5T__-D__ARM_ARCH_5E__-D__ARM_ARCH_5TE__-DANDROID鏈接參數:-nostdlib-Bdynamic-Wl,-dynamic-linker,/system/bin/linker-Wl,--gc-sections-Wl,-z,noreloc-Wl,--no-undefined-Wl,-z,noexecstack-L$(PLATFORM_LIBRARY_DIRECTORYS)crtbegin_static.ocrtend_android.o這其中鏈接參數中的-Wl,-dynamic-linker,/system/bin/linker、crtbegin_static.o、crtend_android.o是最關鍵的,android使用了自己的進程載入器,並且自定義了c運行時的啟動結束。難怪先前編譯的進程啟動不了。

⑵ Arm編譯器有什麼用

Arm RVDS 4.1中的Arm編譯器是唯一一個與Arm編譯器聯合開發的商用編譯器,專門設計用於為 Arm 編譯器架構程序並提供最優支持。該編譯器的開發歷經有20年左右,被公認為是業界標准 C 和 C++ 編譯器,用於生成面向 Arm、Thumb、Thumb-2、VFP 和 NEON 指令集的應用程序。詳情請到億道電子咨詢

⑶ MDK-arm的ARM編譯工具

ARM編譯工具鏈(之前被稱為ARM RealView編譯工具)包含:
ARM C/C++ 編譯器(armcc)
Microlib
ARM Macro匯編器(armasm)
ARM鏈接器(armLink)
ARM工具(Librarian and FromELF)
基於以上專門針對ARM架構的微控制器編譯器,工程師可以使用C或者C++編寫應用程序。通過以上編譯器的編譯,可以獲得ARM匯編語言的高效率和高速度。
ARM編譯器將C/C++元文件編譯成可重定位(Relocatable)的目標模塊,並且在其中嵌入供uVision調試器或在線調試器調試的符號信息。同時,ARM編譯器能幫助生成listing file,它可以包含symbol table(符號表)和交叉引用信息。
ARM RVCT編譯器被廣泛視為行業最佳的基於ARM架構的編譯器。它定位於最佳代碼密度的編譯器,可以幫助生成代碼量最小的編譯器,幫助節省代碼量對內存的要求從而降低硬體成本。同時,編譯器支持ISO標準的C/C++語言,可以將32-bit ARM, the 16-bit Thumb, 及混合的32/16-bit Thumb2 指令集生成經過高度優化的代碼。
ARM公司一直致力於持續改善ARM編譯器在代碼密度和代碼性能兩方面的性能,同時增添了很多新的特點,如Microlib等。

⑷ ARM編譯器有哪些

億道電子表示ARM提供廣泛的產品,包括:16/32位RISC微處理器、數據引擎、三維圖形處理器、數字單元庫、嵌入式存儲器、外設、軟體、開發工具以及模擬和高速連接產品。

⑸ ARM編譯器與VC++編譯器的區別

arm編譯器編譯出來的是arm處理器執行的二進制文件
而vc編譯出來的是在x86構架windows系統下的可執行文件
區別很大,ads編譯出來的文件是直接面對arm底層硬體的操作,很多系統函數需要自己編寫
而vc中很多類,api函數已經是現成的了,直接調用就可以了

ads中填充0xff,其實在沒有代碼的地址上填充什麼都無所謂,因為程序就不會運行到那個地址上,只是為了讓編寫程序的人清楚這個地方時空的。(個人的感覺,不知道對不對)

vc的編譯我不是很清楚,你再看看其他答案吧。也許和arm的情況差不多

⑹ ARMCC和ARMCLANG兩代編譯器有什麼區別

armcc,armclang都是arm的編譯器,armcc支持到Armv7架構,armclang可以支持Armv6,Armv7, Armv8以及今後Arm的新處理器。 如果是原來老項目,可以繼續使用armcc,但對於新項目或新的Arm core,建議armclang。

⑺ ARM編譯器

可以

話說,目前業內一般都是用keil編譯器的,它支持的晶元種類還更多

⑻ 交叉編譯器 arm-linux-gnueabi 和 arm-linux-gnueabihf 的區別

自己之前一直沒搞清楚這兩個交叉編譯器到底有什麼問題,特意google一番,總結如下,希望能幫到道上和我有同樣困惑的兄弟…..
一. 什麼是ABI和EABI
1) ABI: 二進制應用程序介面(Application Binary Interface (ABI) for the ARM Architecture)
在計算機中,應用二進制介面描述了應用程序(或者其他類型)和操作系統之間或其他應用程序的低級介面.
ABI涵蓋了各種細節,如:
數據類型的大小、布局和對齊;
調用約定(控制著函數的參數如何傳送以及如何接受返回值),例如,是所有的參數都通過棧傳遞,還是部分參數通過寄存器傳遞;哪個寄存器用於哪個函數參數;通過棧傳遞的第一個函數參數是最先push到棧上還是最後;
系統調用的編碼和一個應用如何向操作系統進行系統調用;
以及在一個完整的操作系統ABI中,目標文件的二進制格式、程序庫等等。
一個完整的ABI,像Intel二進制兼容標准 (iBCS) ,允許支持它的操作系統上的程序不經修改在其他支持此ABI的操作體統上運行。
ABI不同於應用程序介面(API),API定義了源代碼和庫之間的介面,因此同樣的代碼可以在支持這個API的任何系統中編譯,ABI允許編譯好的目標代碼在使用兼容ABI的系統中無需改動就能運行。
2) EABI: 嵌入式ABI
嵌入式應用二進制介面指定了文件格式、數據類型、寄存器使用、堆積組織優化和在一個嵌入式軟體中的參數的標准約定。
開發者使用自己的匯編語言也可以使用EABI作為與兼容的編譯器生成的匯編語言的介面。
支持EABI的編譯器創建的目標文件可以和使用類似編譯器產生的代碼兼容,這樣允許開發者鏈接一個由不同編譯器產生的庫。
EABI與關於通用計算機的ABI的主要區別是應用程序代碼中允許使用特權指令,不需要動態鏈接(有時是禁止的),和更緊湊的堆棧幀組織用來節省內存。廣泛使用EABI的有Power PC和ARM.
二. gnueabi相關的兩個交叉編譯器: gnueabi和gnueabihf
在debian源里這兩個交叉編譯器的定義如下:
gcc-arm-linux-gnueabi – The GNU C compiler for armel architecture
gcc-arm-linux-gnueabihf – The GNU C compiler for armhf architecture
可見這兩個交叉編譯器適用於armel和armhf兩個不同的架構, armel和armhf這兩種架構在對待浮點運算採取了不同的策略(有fpu的arm才能支持這兩種浮點運算策略)
其實這兩個交叉編譯器只不過是gcc的選項-mfloat-abi的默認值不同. gcc的選項-mfloat-abi有三種值soft,softfp,hard(其中後兩者都要求arm里有fpu浮點運算單元,soft與後兩者是兼容的,但softfp和hard兩種模式互不兼容):
soft : 不用fpu進行浮點計算,即使有fpu浮點運算單元也不用,而是使用軟體模式。
softfp : armel架構(對應的編譯器為gcc-arm-linux-gnueabi)採用的默認值,用fpu計算,但是傳參數用普通寄存器傳,這樣中斷的時候,只需要保存普通寄存器,中斷負荷小,但是參數需要轉換成浮點的再計算。
hard : armhf架構(對應的編譯器gcc-arm-linux-gnueabihf)採用的默認值,用fpu計算,傳參數也用fpu中的浮點寄存器傳,省去了轉換, 性能最好,但是中斷負荷高。
把以下測試使用的c文件內容保存成mfloat.c:
#include <stdio.h>
int main(void)
{
double a,b,c;
a = 23.543;
b = 323.234;
c = b/a;
printf(「the 13/2 = %f\n」, c);
printf(「hello world !\n」);
return 0;
}
1)使用arm-linux-gnueabihf-gcc編譯,使用「-v」選項以獲取更詳細的信息:
# arm-linux-gnueabihf-gcc -v mfloat.c
COLLECT_GCC_OPTIONS=』-v』 『-march=armv7-a』 『-mfloat-abi=hard』 『-mfpu=vfpv3-d16′ 『-mthumb』
-mfloat-abi=hard,可看出使用hard硬體浮點模式。
2)使用arm-linux-gnueabi-gcc編譯:
# arm-linux-gnueabi-gcc -v mfloat.c
COLLECT_GCC_OPTIONS=』-v』 『-march=armv7-a』 『-mfloat-abi=softfp』 『-mfpu=vfpv3-d16′ 『-mthumb』
-mfloat-abi=softfp,可看出使用softfp模式。
三. 拓展閱讀
下文闡述了ARM代碼編譯時的軟浮點(soft-float)和硬浮點(hard-float)的編譯以及鏈接實現時的不同。從VFP浮點單元的引入到軟浮點(soft-float)和硬浮點(hard-float)的概念
VFP (vector floating-point)
從ARMv5開始,就有可選的 Vector Floating Point (VFP) 模塊,當然最新的如 Cortex-A8, Cortex-A9 和 Cortex-A5 可以配置成不帶VFP的模式供晶元廠商選擇。
VFP經過若干年的發展,有VFPv2 (一些 ARM9 / ARM11)、 VFPv3-D16(只使用16個浮點寄存器,默認為32個)和VFPv3+NEON (如大多數的Cortex-A8晶元) 。對於包含NEON的ARM晶元,NEON一般和VFP公用寄存器。
硬浮點Hard-float
編譯器將代碼直接編譯成發射給硬體浮點協處理器(浮點運算單元FPU)去執行。FPU通常有一套額外的寄存器來完成浮點參數傳遞和運算。
使用實際的硬體浮點運算單元FPU當然會帶來性能的提升。因為往往一個浮點的函數調用需要幾個或者幾十個時鍾周期。
軟浮點 Soft-float
編譯器把浮點運算轉換成浮點運算的函數調用和庫函數調用,沒有FPU的指令調用,也沒有浮點寄存器的參數傳遞。浮點參數的傳遞也是通過ARM寄存器或者堆棧完成。
現在的Linux系統默認編譯選擇使用hard-float,即使系統沒有任何浮點處理器單元,這就會產生非法指令和異常。因而一般的系統鏡像都採用軟浮點以兼容沒有VFP的處理器。
armel ABI和armhf ABI
在armel中,關於浮點數計算的約定有三種。以gcc為例,對應的-mfloat-abi參數值有三個:soft,softfp,hard。
soft是指所有浮點運算全部在軟體層實現,效率當然不高,會存在不必要的浮點到整數、整數到浮點的轉換,只適合於早期沒有浮點計算單元的ARM處理器;
softfp是目前armel的默認設置,它將浮點計算交給FPU處理,但函數參數的傳遞使用通用的整型寄存器而不是FPU寄存器;
hard則使用FPU浮點寄存器將函數參數傳遞給FPU處理。
需要注意的是,在兼容性上,soft與後兩者是兼容的,但softfp和hard兩種模式不兼容。
默認情況下,armel使用softfp,因此將hard模式的armel單獨作為一個abi,稱之為armhf。
而使用hard模式,在每次浮點相關函數調用時,平均能節省20個CPU周期。對ARM這樣每個周期都很重要的體系結構來說,這樣的提升無疑是巨大的。
在完全不改變源碼和配置的情況下,在一些應用程序上,使用armhf能得到20%——25%的性能提升。對一些嚴重依賴於浮點運算的程序,更是可以達到300%的性能提升。
Soft-float和hard-float的編譯選項
在CodeSourcery gcc的編譯參數上,使用-mfloat-abi=name來指定浮點運算處理方式。-mfpu=name來指定浮點協處理的類型。
可選類型如fpa,fpe2,fpe3,maverick,vfp,vfpv3,vfpv3-fp16,vfpv3-d16,vfpv3-d16-fp16,vfpv3xd,vfpv3xd-fp16,neon,neon-fp16,vfpv4,vfpv4-d16,fpv4-sp-d16,neon-vfpv4等。
使用-mfloat-abi=hard (等價於-mhard-float) -mfpu=vfp來選擇編譯成硬浮點。使用-mfloat-abi=softfp就能兼容帶VFP的硬體以及soft-float的軟體實現,運行時的連接器ld.so會在執行浮點運算時對於運算單元的選擇,
是直接的硬體調用還是庫函數調用,是執行/lib還是/lib/vfp下的libm。-mfloat-abi=soft (等價於-msoft-float)直接調用軟浮點實現庫。
在ARM RVCT工具鏈下,定義fpu模式:
–fpu softvfp
–fpu softvfp+vfpv2
–fpu softvfp+vfpv3
–fpu softvfp+vfpv_fp16
–fpu softvfp+vfpv_d16
–fpu softvfp+vfpv_d16_fp16.
定義浮點運算類型
–fpmode ieee_full : 所有單精度float和雙精度double的精度都要和IEEE標准一致,具體的模式可以在運行時動態指定;
–fpmode ieee_fixed : 舍入到最接近的實現的IEEE標准,不帶不精確的異常;
–fpmode ieee_no_fenv :舍入到最接近的實現的IEEE標准,不帶異常;
–fpmode std :非規格數flush到0、舍入到最接近的實現的IEEE標准,不帶異常;
–fpmode fast : 更積極的優化,可能會有一點精度損失。

⑼ 關於arm-linux交叉編譯環境

交叉編譯器是一種可以在平台A上為另一種平台B編譯程序的編譯器。其中,運行交叉編譯器的平台A稱為宿主機,交叉編譯生成的目標文件的運行平台B稱為目標機。交叉編譯器的編譯過程稱為交叉編譯。
一個完整的arm-linux交叉編譯器包括arm-linux-gcc、glibc、binutils等組件。其中,arm-linux-gcc是為ARM平台編譯C程序的編譯器;glibc是嵌入式C程序所需的基本函數庫;binutils包含一組二進制工具。所以交叉編譯器又稱為交叉編譯工具鏈。
由於交叉編譯器中每個組件都有各自的版本,所以可以使用不同版本的組件來製作交叉編譯器。但是,組件之間會因版本不匹配的問題二產生錯誤。為了避免這種麻煩,建議直接使用製作好的arm-linux交叉編譯器。

閱讀全文

與arm編譯器詳細信息列印相關的資料

熱點內容
卡爾曼濾波演算法書籍 瀏覽:769
安卓手機怎麼用愛思助手傳文件進蘋果手機上 瀏覽:844
安卓怎麼下載60秒生存 瀏覽:803
外向式文件夾 瀏覽:240
dospdf 瀏覽:431
怎麼修改騰訊雲伺服器ip 瀏覽:392
pdftoeps 瀏覽:496
為什麼鴻蒙那麼像安卓 瀏覽:736
安卓手機怎麼拍自媒體視頻 瀏覽:186
單片機各個中斷的初始化 瀏覽:724
python怎麼集合元素 瀏覽:481
python逐條解讀 瀏覽:833
基於單片機的濕度控制 瀏覽:499
ios如何使用安卓的帳號 瀏覽:883
程序員公園采訪 瀏覽:812
程序員實戰教程要多長時間 瀏覽:979
企業數據加密技巧 瀏覽:135
租雲伺服器開發 瀏覽:814
程序員告白媽媽不同意 瀏覽:337
攻城掠地怎麼查看伺服器 瀏覽:601