① 決策樹演算法原理是什麼
決策樹構造的輸入是一組帶有類別標記的例子,構造的結果是一棵二叉樹或多叉樹。二叉樹的 內部節點(非 葉子節點)一般表示為一個邏輯判斷,如形式為a=aj的邏輯判斷,其中a是屬性,aj是該屬性的所有取值:樹的邊是邏輯判斷的分支結果。
多叉樹(ID3)的內部結點是屬性,邊是該屬性的所有取值,有幾個 屬性值就有幾條邊。樹的葉子節點都是類別標記。
由於數據表示不當、有雜訊或者由於決策樹生成時產生重復的子樹等原因,都會造成產生的決策樹過大。
因此,簡化決策樹是一個不可缺少的環節。尋找一棵最優決策樹,主要應解決以下3個最優化問題:①生成最少數目的葉子節點;②生成的每個葉子節點的深度最小;③生成的決策樹葉子節點最少且每個葉子節點的深度最小。
決策樹演算法的優點如下:
(1)分類精度高;
(2)生成的模式簡單;
(3)對雜訊數據有很好的健壯性。
因而是目前應用最為廣泛的歸納推理演算法之一,在 數據挖掘中受到研究者的廣泛關注。
② 常見決策樹分類演算法都有哪些
在機器學習中,有一個體系叫做決策樹,決策樹能夠解決很多問題。在決策樹中,也有很多需要我們去學習的演算法,要知道,在決策樹中,每一個演算法都是實用的演算法,所以了解決策樹中的演算法對我們是有很大的幫助的。在這篇文章中我們就給大家介紹一下關於決策樹分類的演算法,希望能夠幫助大家更好地去理解決策樹。
1.C4.5演算法
C4.5演算法就是基於ID3演算法的改進,這種演算法主要包括的內容就是使用信息增益率替換了信息增益下降度作為屬性選擇的標准;在決策樹構造的同時進行剪枝操作;避免了樹的過度擬合情況;可以對不完整屬性和連續型數據進行處理;使用k交叉驗證降低了計算復雜度;針對數據構成形式,提升了演算法的普適性等內容,這種演算法是一個十分使用的演算法。
2.CLS演算法
CLS演算法就是最原始的決策樹分類演算法,基本流程是,從一棵空數出發,不斷的從決策表選取屬性加入數的生長過程中,直到決策樹可以滿足分類要求為止。CLS演算法存在的主要問題是在新增屬性選取時有很大的隨機性。
3.ID3演算法
ID3演算法就是對CLS演算法的最大改進是摒棄了屬性選擇的隨機性,利用信息熵的下降速度作為屬性選擇的度量。ID3是一種基於信息熵的決策樹分類學習演算法,以信息增益和信息熵,作為對象分類的衡量標准。ID3演算法結構簡單、學習能力強、分類速度快適合大規模數據分類。但同時由於信息增益的不穩定性,容易傾向於眾數屬性導致過度擬合,演算法抗干擾能力差。
3.1.ID3演算法的優缺點
ID3演算法的優點就是方法簡單、計算量小、理論清晰、學習能力較強、比較適用於處理規模較大的學習問題。缺點就是傾向於選擇那些屬性取值比較多的屬性,在實際的應用中往往取值比較多的屬性對分類沒有太大價值、不能對連續屬性進行處理、對雜訊數據比較敏感、需計算每一個屬性的信息增益值、計算代價較高。
3.2.ID3演算法的核心思想
根據樣本子集屬性取值的信息增益值的大小來選擇決策屬性,並根據該屬性的不同取值生成決策樹的分支,再對子集進行遞歸調用該方法,當所有子集的數據都只包含於同一個類別時結束。最後,根據生成的決策樹模型,對新的、未知類別的數據對象進行分類。
在這篇文章中我們給大家介紹了決策樹分類演算法的具體內容,包括有很多種演算法。從中我們不難發現決策樹的演算法都是經過不不斷的改造趨於成熟的。所以說,機器學習的發展在某種程度上就是由於這些演算法的進步而來的。
③ 決策樹演算法的介紹
決策樹演算法是一種逼近離散函數值的方法。它是一種典型的分類方法,首先對數據進行處理,利用歸納演算法生成可讀的規則和決策樹,然後使用決策對新數據進行分析。本質上決策樹是通過一系列規則對數據進行分類的過程。決策樹方法最早產生於上世紀60年代,到70年代末。由J Ross Quinlan提出了ID3演算法,此演算法的目的在於減少樹的深度。但是忽略了葉子數目的研究。C4.5演算法在ID3演算法的基礎上進行了改進,對於預測變數的缺值處理、剪枝技術、派生規則等方面作了較大改進,既適合於分類問題,又適合於回歸問題。決策樹演算法構造決策樹來發現數據中蘊涵的分類規則.如何構造精度高、規模小的決策樹是決策樹演算法的核心內容。決策樹構造可以分兩步進行。第一步,決策樹的生成:由訓練樣本集生成決策樹的過程。一般情況下,訓練樣本數據集是根據實際需要有歷史的、有一定綜合程度的,用於數據分析處理的數據集。第二步,決策樹的剪技:決策樹的剪枝是對上一階段生成的決策樹進行檢驗、校正和修下的過程,主要是用新的樣本數據集(稱為測試數據集)中的數據校驗決策樹生成過程中產生的初步規則,將那些影響預衡准確性的分枝剪除。
④ 決策樹演算法原理
決策樹是通過一系列規則對數據進行分類的過程。它提供一種在什麼條件下會得到什麼值的類似規則的方法。決策樹分為分類樹和回歸樹兩種,分類樹對離散變數做決策樹,回歸樹對連續變數做決策樹。
如果不考慮效率等,那麼樣本所有特徵的判斷級聯起來終會將某一個樣本分到一個類終止塊上。實際上,樣本所有特徵中有一些特徵在分類時起到決定性作用,決策樹的構造過程就是找到這些具有決定性作用的特徵,根據其決定性程度來構造一個倒立的樹--決定性作用最大的那個特徵作為根節點,然後遞歸找到各分支下子數據集中次大的決定性特徵,直至子數據集中所有數據都屬於同一類。所以,構造決策樹的過程本質上就是根據數據特徵將數據集分類的遞歸過程,我們需要解決的第一個問題就是,當前數據集上哪個特徵在劃分數據分類時起決定性作用。
一棵決策樹的生成過程主要分為以下3個部分:
特徵選擇:特徵選擇是指從訓練數據中眾多的特徵中選擇一個特徵作為當前節點的分裂標准,如何選擇特徵有著很多不同量化評估標准標准,從而衍生出不同的決策樹演算法。
決策樹生成: 根據選擇的特徵評估標准,從上至下遞歸地生成子節點,直到數據集不可分則停止決策樹停止生長。 樹結構來說,遞歸結構是最容易理解的方式。
剪枝:決策樹容易過擬合,一般來需要剪枝,縮小樹結構規模、緩解過擬合。剪枝技術有預剪枝和後剪枝兩種。
劃分數據集的最大原則是:使無序的數據變的有序。如果一個訓練數據中有20個特徵,那麼選取哪個做劃分依據?這就必須採用量化的方法來判斷,量化劃分方法有多重,其中一項就是「資訊理論度量信息分類」。基於資訊理論的決策樹演算法有ID3、CART和C4.5等演算法,其中C4.5和CART兩種演算法從ID3演算法中衍生而來。
CART和C4.5支持數據特徵為連續分布時的處理,主要通過使用二元切分來處理連續型變數,即求一個特定的值-分裂值:特徵值大於分裂值就走左子樹,或者就走右子樹。這個分裂值的選取的原則是使得劃分後的子樹中的「混亂程度」降低,具體到C4.5和CART演算法則有不同的定義方式。
ID3演算法由Ross Quinlan發明,建立在「奧卡姆剃刀」的基礎上:越是小型的決策樹越優於大的決策樹(be simple簡單理論)。ID3演算法中根據資訊理論的信息增益評估和選擇特徵,每次選擇信息增益最大的特徵做判斷模塊。ID3演算法可用於劃分標稱型數據集,沒有剪枝的過程,為了去除過度數據匹配的問題,可通過裁剪合並相鄰的無法產生大量信息增益的葉子節點(例如設置信息增益閥值)。使用信息增益的話其實是有一個缺點,那就是它偏向於具有大量值的屬性--就是說在訓練集中,某個屬性所取的不同值的個數越多,那麼越有可能拿它來作為分裂屬性,而這樣做有時候是沒有意義的,另外ID3不能處理連續分布的數據特徵,於是就有了C4.5演算法。CART演算法也支持連續分布的數據特徵。
C4.5是ID3的一個改進演算法,繼承了ID3演算法的優點。C4.5演算法用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足在樹構造過程中進行剪枝;能夠完成對連續屬性的離散化處理;能夠對不完整數據進行處理。C4.5演算法產生的分類規則易於理解、准確率較高;但效率低,因樹構造過程中,需要對數據集進行多次的順序掃描和排序。也是因為必須多次數據集掃描,C4.5隻適合於能夠駐留於內存的數據集。
CART演算法的全稱是Classification And Regression Tree,採用的是Gini指數(選Gini指數最小的特徵s)作為分裂標准,同時它也是包含後剪枝操作。ID3演算法和C4.5演算法雖然在對訓練樣本集的學習中可以盡可能多地挖掘信息,但其生成的決策樹分支較大,規模較大。為了簡化決策樹的規模,提高生成決策樹的效率,就出現了根據GINI系數來選擇測試屬性的決策樹演算法CART。
決策樹演算法的優點:
(1)便於理解和解釋,樹的結構可以可視化出來
(2)基本不需要預處理,不需要提前歸一化,處理缺失值
(3)使用決策樹預測的代價是O(log2m),m為樣本數
(4)能夠處理數值型數據和分類數據
(5)可以處理多維度輸出的分類問題
(6)可以通過數值統計測試來驗證該模型,這使解釋驗證該模型的可靠性成為可能
(7)即使該模型假設的結果與真實模型所提供的數據有些違反,其表現依舊良好
決策樹演算法的缺點:
(1)決策樹模型容易產生一個過於復雜的模型,這樣的模型對數據的泛化性能會很差。這就是所謂的過擬合.一些策略像剪枝、設置葉節點所需的最小樣本數或設置數的最大深度是避免出現該問題最為有效地方法。
(2)決策樹可能是不穩定的,因為數據中的微小變化可能會導致完全不同的樹生成。這個問題可以通過決策樹的集成來得到緩解。
(3)在多方面性能最優和簡單化概念的要求下,學習一棵最優決策樹通常是一個NP難問題。因此,實際的決策樹學習演算法是基於啟發式演算法,例如在每個節點進行局部最優決策的貪心演算法。這樣的演算法不能保證返回全局最優決策樹。這個問題可以通過集成學習來訓練多棵決策樹來緩解,這多棵決策樹一般通過對特徵和樣本有放回的隨機采樣來生成。
(4)有些概念很難被決策樹學習到,因為決策樹很難清楚的表述這些概念。例如XOR,奇偶或者復用器的問題。
(5)如果某些類在問題中佔主導地位會使得創建的決策樹有偏差。因此,我們建議在擬合前先對數據集進行平衡。
(1)當數據的特徵維度很高而數據量又很少的時候,這樣的數據在構建決策樹的時候往往會過擬合。所以我們要控制樣本數量和特徵的之間正確的比率;
(2)在構建決策樹之前,可以考慮預先執行降維技術(如PCA,ICA或特徵選擇),以使我們生成的樹更有可能找到具有辨別力的特徵;
(3)在訓練一棵樹的時候,可以先設置max_depth=3來將樹可視化出來,以便我們找到樹是怎樣擬合我們數據的感覺,然後在增加我們樹的深度;
(4)樹每增加一層,填充所需的樣本數量是原來的2倍,比如我們設置了最小葉節點的樣本數量,當我們的樹層數增加一層的時候,所需的樣本數量就會翻倍,所以我們要控制好樹的最大深度,防止過擬合;
(5)使用min_samples_split(節點可以切分時擁有的最小樣本數) 和 min_samples_leaf(最小葉節點數)來控制葉節點的樣本數量。這兩個值設置的很小通常意味著我們的樹過擬合了,而設置的很大意味著我們樹預測的精度又會降低。通常設置min_samples_leaf=5;
(6)當樹的類比不平衡的時候,在訓練之前一定要先平很數據集,防止一些類別大的類主宰了決策樹。可以通過采樣的方法將各個類別的樣本數量到大致相等,或者最好是將每個類的樣本權重之和(sample_weight)規范化為相同的值。另請注意,基於權重的預剪枝標准(如min_weight_fraction_leaf)將比不知道樣本權重的標准(如min_samples_leaf)更少偏向主導類別。
(7)如果樣本是帶權重的,使用基於權重的預剪枝標准將更簡單的去優化樹結構,如mn_weight_fraction_leaf,這確保了葉節點至少包含了樣本權值總體總和的一小部分;
(8)在sklearn中所有決策樹使用的數據都是np.float32類型的內部數組。如果訓練數據不是這種格式,則將復制數據集,這樣會浪費計算機資源。
(9)如果輸入矩陣X非常稀疏,建議在調用fit函數和稀疏csr_matrix之前轉換為稀疏csc_matrix,然後再調用predict。 當特徵在大多數樣本中具有零值時,與密集矩陣相比,稀疏矩陣輸入的訓練時間可以快幾個數量級。
⑤ 決策樹之ID3演算法及其Python實現
決策樹之ID3演算法及其Python實現
1. 決策樹背景知識
??決策樹是數據挖掘中最重要且最常用的方法之一,主要應用於數據挖掘中的分類和預測。決策樹是知識的一種呈現方式,決策樹中從頂點到每個結點的路徑都是一條分類規則。決策樹演算法最先基於資訊理論發展起來,經過幾十年發展,目前常用的演算法有:ID3、C4.5、CART演算法等。
2. 決策樹一般構建過程
??構建決策樹是一個自頂向下的過程。樹的生長過程是一個不斷把數據進行切分細分的過程,每一次切分都會產生一個數據子集對應的節點。從包含所有數據的根節點開始,根據選取分裂屬性的屬性值把訓練集劃分成不同的數據子集,生成由每個訓練數據子集對應新的非葉子節點。對生成的非葉子節點再重復以上過程,直到滿足特定的終止條件,停止對數據子集劃分,生成數據子集對應的葉子節點,即所需類別。測試集在決策樹構建完成後檢驗其性能。如果性能不達標,我們需要對決策樹演算法進行改善,直到達到預期的性能指標。
??註:分裂屬性的選取是決策樹生產過程中的關鍵,它決定了生成的決策樹的性能、結構。分裂屬性選擇的評判標準是決策樹演算法之間的根本區別。
3. ID3演算法分裂屬性的選擇——信息增益
??屬性的選擇是決策樹演算法中的核心。是對決策樹的結構、性能起到決定性的作用。ID3演算法基於信息增益的分裂屬性選擇。基於信息增益的屬性選擇是指以信息熵的下降速度作為選擇屬性的方法。它以的資訊理論為基礎,選擇具有最高信息增益的屬性作為當前節點的分裂屬性。選擇該屬性作為分裂屬性後,使得分裂後的樣本的信息量最大,不確定性最小,即熵最小。
??信息增益的定義為變化前後熵的差值,而熵的定義為信息的期望值,因此在了解熵和信息增益之前,我們需要了解信息的定義。
??信息:分類標簽xi 在樣本集 S 中出現的頻率記為 p(xi),則 xi 的信息定義為:?log2p(xi) 。
??分裂之前樣本集的熵:E(S)=?∑Ni=1p(xi)log2p(xi),其中 N 為分類標簽的個數。
??通過屬性A分裂之後樣本集的熵:EA(S)=?∑mj=1|Sj||S|E(Sj),其中 m 代表原始樣本集通過屬性A的屬性值劃分為 m 個子樣本集,|Sj| 表示第j個子樣本集中樣本數量,|S| 表示分裂之前數據集中樣本總數量。
??通過屬性A分裂之後樣本集的信息增益:InfoGain(S,A)=E(S)?EA(S)
??註:分裂屬性的選擇標准為:分裂前後信息增益越大越好,即分裂後的熵越小越好。
4. ID3演算法
??ID3演算法是一種基於信息增益屬性選擇的決策樹學習方法。核心思想是:通過計算屬性的信息增益來選擇決策樹各級節點上的分裂屬性,使得在每一個非葉子節點進行測試時,獲得關於被測試樣本最大的類別信息。基本方法是:計算所有的屬性,選擇信息增益最大的屬性分裂產生決策樹節點,基於該屬性的不同屬性值建立各分支,再對各分支的子集遞歸調用該方法建立子節點的分支,直到所有子集僅包括同一類別或沒有可分裂的屬性為止。由此得到一棵決策樹,可用來對新樣本數據進行分類。
ID3演算法流程:
(1) 創建一個初始節點。如果該節點中的樣本都在同一類別,則演算法終止,把該節點標記為葉節點,並用該類別標記。
(2) 否則,依據演算法選取信息增益最大的屬性,該屬性作為該節點的分裂屬性。
(3) 對該分裂屬性中的每一個值,延伸相應的一個分支,並依據屬性值劃分樣本。
(4) 使用同樣的過程,自頂向下的遞歸,直到滿足下面三個條件中的一個時就停止遞歸。
??A、待分裂節點的所有樣本同屬於一類。
??B、訓練樣本集中所有樣本均完成分類。
??C、所有屬性均被作為分裂屬性執行一次。若此時,葉子結點中仍有屬於不同類別的樣本時,選取葉子結點中包含樣本最多的類別,作為該葉子結點的分類。
ID3演算法優缺點分析
優點:構建決策樹的速度比較快,演算法實現簡單,生成的規則容易理解。
缺點:在屬性選擇時,傾向於選擇那些擁有多個屬性值的屬性作為分裂屬性,而這些屬性不一定是最佳分裂屬性;不能處理屬性值連續的屬性;無修剪過程,無法對決策樹進行優化,生成的決策樹可能存在過度擬合的情況。
⑥ 機器學習故事匯-決策樹演算法
機器學習故事匯-決策樹演算法
【咱們的目標】系列演算法講解旨在用最簡單易懂的故事情節幫助大家掌握晦澀無趣的機器學習,適合對數學很頭疼的同學們,小板凳走起!
決策樹模型是機器學習中最經典的演算法之一啦,用途之廣泛我就不多吹啦,其實很多機器學習演算法都是以樹模型為基礎的,比如隨機森林,Xgboost等一聽起來就是很牛逼的演算法(其實用起來也很牛逼)。
首先我們來看一下在上面的例子中我想根據人的年齡和性別(兩個特徵)對5個人(樣本數據)進行決策,看看他們喜不喜歡玩電腦游戲。首先根據年齡(根節點)進行了一次分支決策,又對左節點根據性別進行了一次分支決策,這樣所有的樣本都落到了最終的葉子節點,可以把每一個葉子節點當成我們最終的決策結果(比如Y代表喜歡玩游戲,N代表不喜歡玩游戲)。這樣我們就通過決策樹完成了非常簡單的分類任務!
再來看一下樹的組成,主要結構有根節點(數據來了之後首先進行判斷的特徵),非葉子節點(中間的一系列過程),葉子節點(最終的結果),這些都是我們要建立的模塊!
在決策中樹中,我們剛才的喜歡玩電腦游戲的任務看起來很簡單嘛,從上往下去走不就OK了嗎!但是難點在於我們該如何構造這棵決策樹(節點的選擇以及切分),這個看起來就有些難了,因為當我們手裡的數據特徵比較多的時候就該猶豫了,到底拿誰當成是根節點呢?
這個就是我們最主要的問題啦,節點究竟該怎麼選呢?不同的位置又有什麼影響?怎麼對特徵進行切分呢?一些到這,我突然想起來一個段子,咱們來樂呵樂呵!
武林外傳中這個段子夠我笑一年的,其實咱們在推導機器學習演算法的時候,也需要這么去想想,只有每一步都是有意義的我們才會選擇去使用它。回歸正題,我們選擇的根節點其實意味著它的重要程度是最大的,相當於大當家了,因為它會對數據進行第一次切分,我們需要把最重要的用在最關鍵的位置,在決策樹演算法中,為了使得演算法能夠高效的進行,那麼一開始就應當使用最有價值的特徵。
接下來咱們就得嘮嘮如何選擇大當家了,我們提出了一個概念叫做熵(不是我提出的。。。穿山甲說的),這里並不打算說的那麼復雜,一句話解釋一下,熵代表你經過一次分支之後分類的效果的好壞,如果一次分支決策後都屬於一個類別(理想情況下,也是我們的目標)這時候我們認為效果很好嘛,那熵值就很低。如果分支決策後效果很差,什麼類別都有,那麼熵值就會很高,公式已經給出,log函數推薦大家自己畫一下,然後看看概率[0,1]上的時候log函數值的大小(你會豁然開朗的)。
不確定性什麼時候最大呢?模稜兩可的的時候(就是你猶豫不決的時候)這個時候熵是最大的,因為什麼類別出現的可能性都有。那麼我們該怎麼選大當家呢?(根節點的特徵)當然是希望經過大當家決策後,熵值能夠下降(意味著類別更純凈了,不那麼混亂了)。在這里我們提出了一個詞叫做信息增益(就當是我提出的吧。。。),信息增益表示經過一次決策後整個分類後的數據的熵值下降的大小,我們希望下降越多越好,理想情況下最純凈的熵是等於零的。
一個栗子:准備一天一個哥們打球的時候,包括了4個特徵(都是環境因素)以及他最終有木有去打球的數據。
第一個問題:大當家該怎麼選?也就是我們的根節點用哪個特徵呢?
一共有4個特徵,看起來好像用誰都可以呀,這個時候就該比試比試了,看看誰的能力強(使得熵值能夠下降的最多)
在歷史數據中,首先我們可以算出來當前的熵值,計算公式同上等於0.940,大當家的競選我們逐一來分析,先看outlook這個特徵,上圖給出了基於天氣的劃分之後的熵值,計算方式依舊同上,比如outlook=sunny時,yes有2個,no有三個這個時候熵就直接將2/5和3/5帶入公式就好啦。最終算出來了3種情況下的熵值。
再繼續來看!outlook取不同情況的概率也是不一樣的,這個是可以計算出來的相當於先驗概率了,直接可以統計出來的,這個也需要考慮進來的。然後outlook競選大當家的分值就出來啦(就是信息增益)等於0.247。同樣的方法其餘3個特徵的信息增益照樣都可以計算出來,誰的信息增益多我們就認為誰是我們的大當家,這樣就完成了根節點的選擇,接下來二當家以此類推就可以了!
我們剛才給大家講解的是經典的ID3演算法,基於熵值來構造決策樹,現在已經有很多改進,比如信息增益率和CART樹。簡單來說一下信息增益率吧,我們再來考慮另外一個因素,如果把數據的樣本編號當成一個特徵,那麼這個特徵必然會使得所有數據完全分的開,因為一個樣本只對應於一個ID,這樣的熵值都是等於零的,所以為了解決這類特徵引入了信息增益率,不光要考慮信息增益還要考慮特徵自身的熵值。說白了就是用 信息增益/自身的熵值 來當做信息增益率。
我們剛才討論的例子中使用的是離散型的數據,那連續值的數據咋辦呢?通常我們都用二分法來逐一遍歷來找到最合適的切分點!
下面再來嘮一嘮決策樹中的剪枝任務,為啥要剪枝呢?樹不是好好的嗎,剪個毛線啊!這個就是機器學習中老生常談的一個問題了,過擬合的風險,說白了就是如果一個樹足夠龐大,那麼所有葉子節點可能只是一個數據點(無限制的切分下去),這樣會使得我們的模型泛化能力很差,在測試集上沒辦法表現出應有的水平,所以我們要限制決策樹的大小,不能讓枝葉太龐大了。
最常用的剪枝策略有兩種:
(1)預剪枝:邊建立決策樹邊開始剪枝的操作
(2)後剪枝:建立完之後根據一定的策略來修建
這些就是我們的決策樹演算法啦,其實還蠻好的理解的,從上到下基於一種選擇標准(熵,GINI系數)來找到最合適的當家的就可以啦!
⑦ 決策樹(Decision Tree)
決策樹(Decision Tree)是一種基本的分類與回歸方法,其模型呈樹狀結構,在分類問題中,表示基於特徵對實例進行分類的過程。本質上,決策樹模型就是一個定義在特徵空間與類空間上的條件概率分布。決策樹學習通常包括三個步驟: 特徵選擇 、 決策樹的生成 和 決策樹的修剪 。
分類決策樹模型是一種描述對實例進行分類的樹形結構,決策樹由節點(node)和有向邊(directed edge)組成。節點有兩種類型:內部節點(internal node)和葉節點(leaf node)。內部節點表示一個特徵或屬性,葉節點表示一個類。
利用決策樹進行分類,從根節點開始,對實例的某一特徵進行測試,根據測試結果將實例分配到其子節點;這時,每一個子節點對應著該特徵的一個取值。如此遞歸地對實例進行測試並分配,直至達到葉節點。最後將實例分到葉節點的類中。
決策樹是給定特徵條件下類的條件概率分布,這一條件概率分布定義在特徵區間的一個劃分(partiton)上。將特徵空間劃分為互不相交的單元(cell)或區域(region),並在每個單元定義一個類的概率分布就構成了一個條件概率分布。決策樹的一條路徑對應劃分中的一個單元,決策樹所表示的條件概率分布由各個單元給定條件下類的條件概率分布組成。假設X為表示特徵的隨機變數,Y為表示類的隨機變數,那麼這個條件概率分布可以表示成P(Y|X)。X取值於給定劃分下單元的集合,Y取值於類的集合,各葉節點(單元)上的條件概率往往偏向於某一個類,即屬於某一類的概率較大,決策樹分類時將該節點的實例分到條件概率大的那一類去。也就以為著決策樹學習的過程其實也就是由數據集估計條件概率模型的過程,這些基於特徵區間劃分的類的條件概率模型由無窮多個,在進行選擇時,不僅要考慮模型的擬合能力還要考慮其泛化能力。
為了使模型兼顧模型的擬合和泛化能力,決策樹學習使用正則化的極大似然函數來作為損失函數,以最小化損失函數為目標,尋找最優的模型。顯然從所有可能的決策樹中選取最優決策樹是NP完全問題,所以在實際中通常採用啟發式的方法,近似求解這一最優化問題: 通過遞歸的選擇最優特徵,根據該特徵對訓練數據進行劃分直到使得各個子數據集有一個最好的分類,最終生成特徵樹 。當然,這樣得到的決策樹實際上是次最優(sub-optimal)的。進一步的,由於決策樹的演算法特性,為了防止模型過擬合,需要對已生成的決策樹自下而上進行剪枝,將樹變得更簡單,提升模型的泛化能力。具體來說,就是去掉過於細分的葉節點,使其退回到父節點,甚至更高的節點,然後將父節點或更高的節點改為新的葉節點。如果數據集的特徵較多,也可以在進行決策樹學習之前,對數據集進行特徵篩選。
由於決策樹是一個條件概率分布,所以深淺不同的決策樹對應著不同復雜度的概率模型,決策樹的生成對應模型的局部選擇,決策樹的剪枝對應著模型的全局選擇。
熵(Entropy) 的概念最早起源於物理學,最初物理學家用這個概念度量一個熱力學系統的無序程度。在1948年, 克勞德·艾爾伍德·香農 將熱力學的熵,引入到 資訊理論 ,因此它又被稱為 香農熵 。在資訊理論中,熵是對不確定性的量度,在一條信息的熵越高則能傳輸越多的信息,反之,則意味著傳輸的信息越少。
如果有一枚理想的硬幣,其出現正面和反面的機會相等,則拋硬幣事件的熵等於其能夠達到的最大值。我們無法知道下一個硬幣拋擲的結果是什麼,因此每一次拋硬幣都是不可預測的。因此,使用一枚正常硬幣進行若干次拋擲,這個事件的熵是一 比特 ,因為結果不外乎兩個——正面或者反面,可以表示為 0, 1 編碼,而且兩個結果彼此之間相互獨立。若進行 n 次 獨立實驗 ,則熵為 n ,因為可以用長度為 n 的比特流表示。但是如果一枚硬幣的兩面完全相同,那個這個系列拋硬幣事件的熵等於零,因為 結果能被准確預測 。現實世界裡,我們收集到的數據的熵介於上面兩種情況之間。
另一個稍微復雜的例子是假設一個 隨機變數 X ,取三種可能值 ,概率分別為 ,那麼編碼平均比特長度是: 。其熵為 。因此<u>熵實際是對隨機變數的比特量和順次發生概率相乘再總和的</u> 數學期望 。
依據玻爾茲曼H定理,香農把隨機變數X的熵 定義為:
其中 是隨機變數X的信息量,當隨機變數取自有限樣本時,熵可以表示為:
若 ,則定義 。
同理可以定義條件熵 :
很容易看出,條件熵(conditional entropy) 就是X給定條件下Y的條件概率分布的熵對X的數學期望。當熵和條件熵中的概率有極大似然估計得到時,所對應的熵和條件熵分別稱為檢驗熵(empirical entropy)和經驗條件熵(empirical conditional entropy).
熵越大,隨機變數的不確定性就越大,從定義可以驗證:
當底數 時,熵的單位是 ;當 時,熵的單位是 ;而當 時,熵的單位是 .
如英語有26個字母,假如每個字母在文章中出現的次數平均的話,每個字母的信息量 為:
同理常用漢字2500有個,假設每個漢字在文章中出現的次數平均的話,每個漢字的信息量 為:
事實上每個字母和漢字在文章中出現的次數並不平均,少見字母和罕見漢字具有相對較高的信息量,顯然,由期望的定義,熵是整個消息系統的平均消息量。
熵可以用來表示數據集的不確定性,熵越大,則數據集的不確定性越大。因此使用 劃分前後數據集熵的差值 量度使用當前特徵對於數據集進行劃分的效果(類似於深度學習的代價函數)。對於待劃分的數據集 ,其劃分前的數據集的熵 是一定的,但是劃分之後的熵 是不定的, 越小說明使用此特徵劃分得到的子集的不確定性越小(也就是純度越高)。因此 越大,說明使用當前特徵劃分數據集 時,純度上升的更快。而我們在構建最優的決策樹的時候總希望能更快速到達純度更高的數據子集,這一點可以參考優化演算法中的梯度下降演算法,每一步沿著負梯度方法最小化損失函數的原因就是負梯度方向是函數值減小最快的方向。同理:在決策樹構建的過程中我們總是希望集合往最快到達純度更高的子集合方向發展,因此我們總是選擇使得信息增益最大的特徵來劃分當前數據集 。
顯然這種劃分方式是存在弊端的,按信息增益准則的劃分方式,當數據集的某個特徵B取值較多時,依此特徵進行劃分更容易得到純度更高的數據子集,使得 偏小,信息增益會偏大,最終導致信息增益偏向取值較多的特徵。
設 是 個數據樣本的集合,假定類別屬性具有 個不同的值: ,設 是類 中的樣本數。對於一個給定樣本,它的信息熵為:
其中, 是任意樣本屬於 的概率,一般可以用 估計。
設一個屬性A具有 個不同的值 ,利用屬性A將集合 劃分為 個子集 ,其中 包含了集合 中屬性 取 值的樣本。若選擇屬性A為測試屬性,則這些子集就是從集合 的節點生長出來的新的葉節點。設 是子集 中類別為 的樣本數,則根據屬性A劃分樣本的信息熵為:
其中 , 是子集 中類別為 的樣本的概率。最後,用屬性A劃分樣本子集 後所得的 信息增益(Gain) 為:
即,<u>屬性A的信息增益=劃分前數據的熵-按屬性A劃分後數據子集的熵</u>。 信息增益(information gain)又稱為互信息(matual information)表示得知特徵X的信息而使得類Y的信息的不確定性減少的程度 。信息增益顯然 越小, 的值越大,說明選擇測試屬性A對於分類提供的信息越多,選擇A之後對分類的不確定程度越小。
經典演算法 ID3 使用的信息增益特徵選擇准則會使得劃分更偏相遇取值更多的特徵,為了避免這種情況。ID3的提出者 J.Ross Quinlan 提出了 C4.5 ,它在ID3的基礎上將特徵選擇准則由 信息增益 改為了 信息增益率 。在信息增益的基礎之上乘上一個懲罰參數。特徵個數較多時,懲罰參數較小;特徵個數較少時,懲罰參數較大(類似於正則化)。這個懲罰參數就是 分裂信息度量 的倒數 。
不同於 ID3 和 C4.5 , CART 使用基尼不純度來作為特徵選擇准則。基尼不純度也叫基尼指數 , 表示在樣本集合中一個隨機選中的樣本被分錯的概率 則<u>基尼指數(基尼不純度)= 樣本被選中的概率 * 樣本被分錯的概率</u>。Gini指數越小表示集合中被選中的樣本被分錯的概率越小,也就是說集合的純度越高,反之,集合越不純。
樣本集合的基尼指數:
樣本集合 有m個類別, 表示第 個類別的樣本數量,則 的Gini指數為:
基於某個特徵劃分樣本集合S之後的基尼指數:
CART是一個二叉樹,也就是當使用某個特徵劃分樣本集合後,得到兩個集合:a.等於給定的特徵值的樣本集合 ;b.不等於給定特徵值的樣本集合 。實質上是對擁有多個取值的特徵的二值處理。
對於上述的每一種劃分,都可以計算出基於劃分特=某個特徵值將樣本集合劃分為兩個子集的純度:
因而對於一個具有多個取值(超過2個)的特徵,需要計算以每個取值為劃分點,對樣本集合劃分後子集的純度 ( 表示特徵 的可能取值)然後從所有的劃分可能 中找出Gini指數最小的劃分,這個劃分的劃分點,就是使用特徵 對樣本集合 進行劃分的最佳劃分點。
參考文獻 :
決策樹--信息增益,信息增益比,Geni指數的理解
【機器學習】深入理解--信息熵(Information Entropy)
統計學習方法 (李航)
為了便於理解,利用以下數據集分別使用三種方法進行分類:
在進行具體分析之前,考慮到收入是數值類型,要使用決策樹演算法,需要先對該屬性進行離散化。
在機器學習演算法中,一些分類演算法(ID3、Apriori等)要求數據是分類屬性形式,因此在處理分類問題時經常需要將一些連續屬性變換為分類屬性。一般來說,連續屬性的離散化都是通過在數據集的值域內設定若干個離散的劃分點,將值域劃分為若干區間,然後用不同的符號或整數數值代表落在每個子區間中的數據值。所以,離散化最核心的兩個問題是:如何確定分類數以及如何將連續屬性映射到這些分類值。常用的離散化方法有 等寬法 , 等頻法 以及 一維聚類法 等。
在實際使用時往往使用Pandas的 cut() 函數實現等寬離散化:
可以看到與手工計算的離散化結果相同,需要注意的是,<u> 等寬法對於離群點比較敏感,傾向於不均勻地把屬性值分布到各個區間,導致某些區間數據較多,某些區間數據很少,這顯然不利用決策模型的建立。 </u>
使用四個分位數作為邊界點,對區間進行劃分:
<u> 等頻率離散化雖然避免了等寬離散化的數據分布不均勻的問題,卻可能將相同的數據值分到不同的區間以滿足每個區間具有相同數量的屬性取值的要求。 </u>
使用一維聚類的離散化方法後得到數據集為:
在本次實例中選擇使用基於聚類的離散化方法後得到的數據集進行指標計算。為了預測客戶能否償還債務,使用A(擁有房產)、B(婚姻情況)、C(年收入)等屬性來進行數據集的劃分最終構建決策樹。
單身 :
離婚 :
已婚 :
顯然,由B屬性取值'已婚'劃分得到的子數據集屬於同一個葉節點,無法再進行分類。
接下來,對由B屬性取值'單身'劃分得到的子數據集 再進行最優特徵選擇:
1)計算數據集 總的信息熵,其中4個數據中,能否償還債務為'是'數據有3,'否'數據有1,則總的信息熵:
2)對於A(擁有房產)屬性,其屬性值有'是'和'否'兩種。其中,在A為'是'的前提下,能否償還債務為'是'的有1、'否'的有0;在A為'否'的前提下,能否償還債務為'是'的有2、為'否'的有1,則A屬性的信息熵為:
3)對於B(婚姻情況)屬性,由於已被確定,在這個數據子集信息熵為0
4)對於C(年收入)屬性,其屬性值有'中等輸入'、'低收入'兩種。在C為'中等收入'的前提下,能否償還作為為'是'的有1,為'否'的有0;在C為'低收入'的前提下,能否償還作為為'是'的有2,為'否'的有1;則C屬性的信息熵為:
5)最後分別計算兩個屬性的信息增益值:
信息增益值相同,說明以兩個屬性對數據子集進行劃分後決策樹的純度上升是相同的,此時任選其一成為葉節點即可。
同理,對數據子集 進行最優特徵選擇,發現信息熵為0:
整理得到最終的決策樹:
⑧ 決策樹的演算法
C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。此外,C4.5隻適合於能夠駐留於內存的數據集,當訓練集大得無法在內存容納時程序無法運行。
具體演算法步驟如下;
1創建節點N
2如果訓練集為空,在返回節點N標記為Failure
3如果訓練集中的所有記錄都屬於同一個類別,則以該類別標記節點N
4如果候選屬性為空,則返回N作為葉節點,標記為訓練集中最普通的類;
5for each 候選屬性 attribute_list
6if 候選屬性是連續的then
7對該屬性進行離散化
8選擇候選屬性attribute_list中具有最高信息增益率的屬性D
9標記節點N為屬性D
10for each 屬性D的一致值d
11由節點N長出一個條件為D=d的分支
12設s是訓練集中D=d的訓練樣本的集合
13if s為空
14加上一個樹葉,標記為訓練集中最普通的類
15else加上一個有C4.5(R - {D},C,s)返回的點 背景:
分類與回歸樹(CART——Classification And Regression Tree)) 是一種非常有趣並且十分有效的非參數分類和回歸方法。它通過構建二叉樹達到預測目的。
分類與回歸樹CART 模型最早由Breiman 等人提出,已經在統計領域和數據挖掘技術中普遍使用。它採用與傳統統計學完全不同的方式構建預測准則,它是以二叉樹的形式給出,易於理解、使用和解釋。由CART 模型構建的預測樹在很多情況下比常用的統計方法構建的代數學預測准則更加准確,且數據越復雜、變數越多,演算法的優越性就越顯著。模型的關鍵是預測准則的構建,准確的。
定義:
分類和回歸首先利用已知的多變數數據構建預測准則, 進而根據其它變數值對一個變數進行預測。在分類中, 人們往往先對某一客體進行各種測量, 然後利用一定的分類准則確定該客體歸屬那一類。例如, 給定某一化石的鑒定特徵, 預測該化石屬那一科、那一屬, 甚至那一種。另外一個例子是, 已知某一地區的地質和物化探信息, 預測該區是否有礦。回歸則與分類不同, 它被用來預測客體的某一數值, 而不是客體的歸類。例如, 給定某一地區的礦產資源特徵, 預測該區的資源量。