❶ pcm 編譯碼晶元中的用到哪些濾波器這些濾波器的帶寬設置是如何考慮 的
1. 點到點PCM多路電話通信原理
脈沖編碼調制(PCM)技術與增量調制(ΔM)技術已經在數字通信系統中得到廣泛應用。當信道雜訊比較小時一般用PCM,否則一般用ΔM。目前速率在155MB以下的准同步數字系列(PDH)中,國際上存在A解和μ律兩種PCM編解碼標准系列,在155MB以上的同步數字系列(SDH)中,將這兩個系列統一起來,在同一個等級上兩個系列的碼速率相同。而ΔM在國際上無統一標准,但它在通信環境比較惡劣時顯示了巨大的優越性。
點到點PCM多路電話通信原理可用圖9-1表示。對於基帶通信系統,廣義信道包括傳輸媒質、收濾波器、發濾波器等。對於頻帶系統,廣義信道包括傳輸媒質、調制器、解調器、發濾波器、收濾波器等。
本實驗模塊可以傳輸兩路話音信號。採用TP3057編譯器,它包括了圖9-1中的收、發低通濾波器及PCM編解碼器。編碼器輸入信號可以是本實驗模塊內部產生的正弦信號,也可以是外部信號源的正弦信號或電話信號。本實驗模塊中不含電話機和混合電路,廣義信道是理想的,即將復接器輸出的PCM信號直接送給分接器。
2. PCM編解碼模塊原理
本模塊的原理方框圖圖9-2所示,電原理圖如圖9-3所示(見附錄),模塊內部使用+5V和-5V電壓,其中-5V電壓由-12V電源經7905變換得到。
圖9-2 PCM編解碼原理方框圖
該模塊上有以下測試點和輸入點:
• BS PCM基群時鍾信號(位同步信號)測試點
• SL0 PCM基群第0個時隙同步信號
• SLA 信號A的抽樣信號及時隙同步信號測試點
• SLB 信號B的抽樣信號及時隙同步信號測試點
• SRB 信號B解碼輸出信號測試點
• STA 輸入到編碼器A的信號測試點
• SRA 信號A解碼輸出信號測試點
• STB 輸入到編碼器B的信號測試點
• PCM PCM基群信號測試點
• PCM-A 信號A編碼結果測試點
• PCM-B 信號B編碼結果測試點
• STA-IN 外部音頻信號A輸入點
• STB-IN 外部音頻信號B輸入點
本模塊上有三個開關K5、K6和K8,K5、K6用來選擇兩個編碼器的輸入信號,開關手柄處於左邊(STA-IN、STB-IN)時選擇外部信號、處於右邊(STA-S、STB-S)時選擇模塊內部音頻正弦信號。K8用來選擇SLB信號為時隙同步信號SL1、SL2、SL5、SL7中的某一個。
圖9-2各單元與電路板上元器件之間的對應關系如下:
•晶振 U75:非門74LS04;CRY1:4096KHz晶體
•分頻器1 U78:A:U78:D:觸發器74LS74;U79:計數器74LS193
•分頻器2 U80:計數器74LS193;U78:B:U78:D:觸發器74LS74
•抽樣信號產生器 U81:單穩74LS123;U76:移位寄存器74LS164
•PCM編解碼器A U82:PCM編解碼集成電路TP3057(CD22357)
•PCM編解碼器B U83:PCM編解碼集成電路TP3057(CD22357)
•幀同步信號產生器 U77:8位數據產生器74HC151;U86:A:與門7408
•正弦信號源A U87:運放UA741
•正弦信號源B U88:運放UA741
•復接器 U85:或門74LS32
晶振、分頻器1、分頻器2及抽樣信號(時隙同步信號)產生器構成一個定時器,為兩個PCM編解碼器提供2.048MHz的時鍾信號和8KHz的時隙同步信號。在實際通信系統中,解碼器的時鍾信號(即位同步信號)及時隙同步信號(即幀同步信號)應從接收到的數據流中提取,方法如實驗五及實驗六所述。此處將同步器產生的時鍾信號及時隙同步信號直接送給解碼器。
由於時鍾頻率為2.048MHz,抽樣信號頻率為8KHz,故PCM-A及PCM-B的碼速率都是2.048MB,一幀中有32個時隙,其中1個時隙為PCM編碼數據,另外31個時隙都是空時隙。
PCM信號碼速率也是2.048MB,一幀中的32個時隙中有29個是空時隙,第0時隙為幀同步碼(×1110010)時隙,第2時隙為信號A的時隙,第1(或第5、或第7 —由開關K8控制)時隙為信號B的時隙。
本實驗產生的PCM信號類似於PCM基群信號,但第16個時隙沒有信令信號,第0時隙中的信號與PCM基群的第0時隙的信號也不完全相同。
由於兩個PCM編解碼器用同一個時鍾信號,因而可以對它們進行同步復接(即不需要進行碼速調整)。又由於兩個編碼器輸出數據處於不同時隙,故可對PCM-A和PCM-B進行線或。本模塊中用或門74LS32對PCM-A、PCM-B及幀同步信號進行復接。在解碼之前,不需要對PCM進行分接處理,解碼器的時隙同步信號實際上起到了對信號分路的作用。
3. TP3057簡介
本模塊的核心器件是A律PCM編解碼集成電路TP3057,它是CMOS工藝製造的專用大規模集成電路,片內帶有輸出輸入話路濾波器,其引腳及內部框圖如圖9-4、圖9-5所示。引腳功能如下:
圖9-4 TP3057引腳圖
(1) V一 接-5V電源。
(2) GND 接地。
(3) VFRO 接收部分濾波器模擬信號輸出端。
(4) V+ 接+5V電源。
(5) FSR 接收部分幀同信號輸入端,此信號為8KHz脈沖序列。
(6) DR 接收部分PCM碼流輸入端。
(7) BCLKR/CLKSEL 接收部分位時鍾(同步)信號輸入端,此信號將PCM碼流在FSR上升沿後逐位移入DR端。位時鍾可以為64KHz到2.048MHz的任意頻率,或者輸入邏輯「1」或「0」電平器以選擇1.536MHz、1.544MHz或2.048MHz用作同步模式的主時鍾,此時發時鍾信號BCLKX同時作為發時鍾和收時鍾。
(8) MCLKR/PDN 接收部分主時鍾信號輸入端,此信號頻率必須為1.536MHz、1.544MHz或2.048MHz。可以和MCLKX非同步,但是同步工作時可達到最佳狀態。當此端接低電平時,所有的內部定時信號都選擇MCLKX信號,當此端接高電平時,器件處於省電狀態。
(9) MCLKX 發送部分主時鍾信號輸入端,此信號頻率必須為1.536MHz、1.544MHz或2.048MHz。可以和MCLKR非同步,但是同步工作時可達到最佳狀態。
(10) BCLKX 發送部分位時鍾輸入端,此信號將PCM碼流在FSX信號上升沿後逐位移出DX端,頻率可以為64KHz到2.04MHz的任意頻率,但必須與MCLKX同步。
圖9-5 TP3057內部方框圖
(11) DX 發送部分PCM碼流三態門輸出端。
(12) FSX 發送部分幀同步信號輸入端,此信號為8KHz脈沖序列。
(13) TSX 漏極開路輸出端,在編碼時隙輸出低電平。
(14) GSX 發送部分增益調整信號輸入端。
(15) VFXi- 發送部分放大器反向輸入端。
(16) VFXi+ 發送部分放大器正向輸入端。
TP3057由發送和接收兩部分組成,其功能簡述如下。
發送部分:
包括可調增益放大器、抗混淆濾波器、低通濾波器、高通濾波器、壓縮A/D轉換器。抗混淆濾波器對采樣頻率提供30dB以上的衰減從而避免了任何片外濾波器的加入。低通濾波器是5階的、時鍾頻率為128MHz。高通濾波器是3階的、時鍾頻率為32KHz。高通濾波器的輸出信號送給階梯波產生器(采樣頻率為8KHz)。階梯波產生器、逐次逼近寄存器(S•A•R)、比較器以及符號比特提取單元等4個部分共同組成一個壓縮式A/D轉換器。S•A•R輸出的並行碼經並/串轉換後成PCM信號。參考信號源提供各種精確的基準電壓,允許編碼輸入電壓最大幅度為5VP-P。
發幀同步信號FSX為采樣信號。每個采樣脈沖都使編碼器進行兩項工作:在8比特位同步信號BCLKX的作用下,將采樣值進行8位編碼並存入逐次逼近寄存器;將前一采樣值的編碼結果通過輸出端DX輸出。在8比特位同步信號以後,DX端處於高阻狀態。
接收部分:
包括擴張D/A轉換器和低通濾波器。低通濾波器符合AT&T D3/D4標准和CCITT建議。D/A轉換器由串/並變換、D/A寄存器組成、D/A階梯波形成等部分構成。在收幀同步脈沖FSR上升沿及其之後的8個位同步脈沖BCLKR作用下,8比特PCM數據進入接收數據寄存器(即D/A寄存器),D/A階梯波單元對8比特PCM數據進行D/A變換並保持變換後的信號形成階梯波信號。此信號被送到時鍾頻率為128KHz的開關電容低通濾波器,此低通濾波器對階梯波進行平滑濾波並對孔徑失真(sinx)/x進行補嘗。
在通信工程中,主要用動態范圍和頻率特性來說明PCM編解碼器的性能。
動態范圍的定義是解碼器輸出信噪比大於25dB時允許編碼器輸入信號幅度的變化范圍。PCM編解碼器的動態范圍應大於圖9-6所示的CCITT建議框架(樣板值)。
當編碼器輸入信號幅度超過其動態范圍時,出現過載雜訊,故編碼輸入信號幅度過大時量化信噪比急劇下降。TP3057編解碼系統不過載輸入信號的最大幅度為5VP-P。
由於採用對數壓擴技術,PCM編解碼系統可以改善小信號的量化信噪比,TP3057採用A律13折線對信號進行壓擴。當信號處於某一段落時,量化雜訊不變(因在此段落內對信號進行均勻量化),因此在同一段落內量化信噪比隨信號幅度減小而下降。13折線壓擴特性曲線將正負信號各分為8段,第1段信號最小,第8段信號最大。當信號處於第一、二段時,量化雜訊不隨信號幅度變化,因此當信號太小時,量化信噪比會小於25dB,這就是動態范圍的下限。TP3057編解碼系統動態范圍內的輸入信號最小幅度約為0.025Vp-p。
常用1KHz的正弦信號作為輸入信號來測量PCM編解碼器的動態范圍。
圖9-6 PCM編解碼系統動態范圍樣板值
語音信號的抽樣信號頻率為8KHz,為了不發生頻譜混疊,常將語音信號經截止頻率為3.4KHz的低通濾波器處理後再進行A/D處理。語音信號的最低頻率一般為300Hz。TP3057編碼器的低通濾波器和高通濾波器決定了編解碼系統的頻率特性,當輸入信號頻率超過這兩個濾波器的頻率范圍時,解碼輸出信號幅度迅速下降。這就是PCM編解碼系統頻率特性的含義。
四、實驗步驟
1. 熟悉PCM編解碼單元工作原理,開關K9接通8KHz(置為1000狀態),開關K8置為SL1(或SL5、SL7),開關K5、K6分別置於STA-S、STB-S端,接通實驗箱電源。
2. 用示波器觀察STA、STB,調節電位器R19(對應STA)、R20(對應STB),使正弦信號STA、STB波形不失真(峰峰值小於5V)。
3. 用示波器觀察PCM編碼輸出信號。
示波器CH1接SL0,(調整示波器掃描周期以顯示至少兩個SL0脈沖,從而可以觀察完整的一幀信號)CH2分別接SLA、PCM-A、SLB、PCM-B以及PCM,觀察編碼後的數據所處時隙位置與時隙同步信號的關系以及PCM信號的幀結構(注意:本實驗的幀結構中有29個時隙是空時隙,SL0、SLA及SLB的脈沖寬度等於一個時隙寬度)。
開關K8分別接通SL1、SL2、SL5、SL7,觀察PCM基群幀結構的變化情況。
4. 用示波器觀察PCM解碼輸出信號
示波器的CH1接STA,CH2接SRA,觀察這兩個信號波形是否相同(有相位差)。
5. 用示波器定性觀察PCM編解碼器的動態范圍。
開關K5置於STA-IN端,將低失真低頻信號發生器輸出的1KHz正弦信號從STA-IN輸入到TP3057(U82)編碼器。示波器的CH1接STA(編碼輸入),CH2接SRA(解碼輸出)。將信號幅度分別調至大於5VP-P、等於5VP-P,觀察過載和滿載時的解碼輸出波形。再將信號幅度分別衰減10dB、20dB、30dB、40dB、45dB、50dB,觀察解碼輸出波形(當衰減45dB以上時,解碼輸出信號波形上疊加有較明顯的雜訊)。
也可以用本模塊上的正弦信號源來觀察PCM編解碼系統的過載雜訊(只要將STA-S或STB-S信號幅度調至5VP-P以上即可),但必須用專門的信號源才能較方便地觀察到動態范圍。
❷ 那位大神知道pcm編解碼器的原理
將模擬信號的抽樣量化值變換成代碼稱為脈沖編碼調制(PCM)
脈沖編碼調制原理如下面的圖片所示
❸ 通信原理-PCM編碼-量化誤差
都對的。看題目,如果明確指出編碼解碼就按對應的計算,沒有指出一般默認解碼誤差,就是按中間值,如果不放心加一行文字說明,說明解碼時按中間值輸出就行。
❹ 簡述pcm數字化音頻的主要原理
PCM(Pulse Code Molation)脈沖編碼調制是一種模數轉換的最基本編碼方法。
它把模擬信號轉換成數字信號的過程稱為模/數轉換,它主要包括三在版塊: (1)采樣:在時間軸上對信號數字化。(2)量化:在幅度軸上對信號數字化。(3)編碼:按一定格式記錄采樣和量化後的數字數據。
編碼的過程首先用一組脈沖采樣時鍾信號與輸入的模擬音頻信號相乘,相乘的結果即輸入信號在時間軸上的數字化。然後對采樣以後的信號幅值進行量化。最簡單的量化方法是均衡量化,這個量化的過程由量化器來完成。
對經量化器A/D變換後的信號再進行編碼,即把量化的信號電平轉換成二進制碼組,就得到了離散的二進制輸出數據序列x ( n ),n表示量化的時間序列,x ( n )的值就是n時刻量化後的幅值,以二進制的形式表示和記錄。
PCM文件:模擬音頻信號經模數轉換(A/D變換)直接形成的二進制序列,該文件沒有附加的文件頭和文件結束標志。Windows的Convert工具可以把PCM音頻格式的文件轉換成Microsoft的WAV格式的文件。
將音頻數字化,其實就是將聲音數字化。最常見的方式是通過脈沖編碼調制PCM(Pulse Code Molation)。運作原理如下。
首先我們考慮聲音經過麥克風,轉換成一連串電壓變化的信號,如圖一所示。這張圖的橫坐標為秒,縱坐標為電壓大小。要將這樣的信號轉為 PCM 格式的方法,是使用三個參數來表示聲音,它們是:聲道數、采樣位數和采樣頻率。
采樣頻率:即取樣頻率,指每秒鍾取得聲音樣本的次數。采樣頻率越高,聲音的質量也就越好,聲音的還原也就越真實,但同時它占的資源比較多。
由於人耳的解析度很有限,太高的頻率並不能分辨出來。在16位音效卡中有22KHz、44KHz等幾級,其中,22KHz相當於普通FM廣播的音質,44KHz已相當於CD音質了,目前的常用采樣頻率都不超過48KHz。
采樣位數:即采樣值或取樣值(就是將采樣樣本幅度量化)。它是用來衡量聲音波動變化的一個參數,也可以說是音效卡的解析度。它的數值越大,解析度也就越高,所發出聲音的能力越強。
聲道數:很好理解,有單聲道和立體聲之分,單聲道的聲音只能使用一個喇叭發聲(有的也處理成兩個喇叭輸出同一個聲道的聲音),立體聲的pcm可以使兩個喇叭都發聲(一般左右聲道有分工) ,更能感受到空間效果。
❺ PCM的工作原理
脈沖編碼調制就是把一個時間連續,取值連續的模擬信號變換成時間離散,取值離散的數字信號後在信道中傳輸。脈沖編碼調制就是對模擬信號先抽樣,再對樣值幅度量化,編碼的過程。
抽樣,就是對模擬信號進行周期性掃描,把時間上連續的信號變成時間上離散的信號,抽樣必須遵循奈奎斯特抽樣定理。該模擬信號經過抽樣後還應當包含原信號中所有信息,也就是說能無失真的恢復原模擬信號。它的抽樣速率的下限是由抽樣定理確定的。抽樣速率採用8KHZ。
量化,就是把經過抽樣得到的瞬時值將其幅度離散,即用一組規定的電平,把瞬時抽樣值用最接近的電平值來表示,通常是用二進製表示。
量化誤差:量化後的信號和抽樣信號的差值。量化誤差在接收端表現為雜訊,稱為量化雜訊。 量化級數越多誤差越小,相應的二進制碼位數越多,要求傳輸速率越高,頻帶越寬。 為使量化雜訊盡可能小而所需碼位數又不太多,通常採用非均勻量化的方法進行量化。 非均勻量化根據幅度的不同區間來確定量化間隔,幅度小的區間量化間隔取得小,幅度大的區間量化間隔取得大。
一個模擬信號經過抽樣量化後,得到已量化的脈沖幅度調制信號,它僅為有限個數值。
編碼,就是用一組二進制碼組來表示每一個有固定電平的量化值。然而,實際上量化是在編碼過程中同時完成的,故編碼過程也稱為模/數變換,可記作A/D。
話音信號先經防混疊低通濾波器,進行脈沖抽樣,變成8KHz重復頻率的抽樣信號(即離散的脈沖調幅PAM信號),然後將幅度連續的PAM信號用「四捨五入」辦法量化為有限個幅度取值的信號,再經編碼後轉換成二進制碼。對於電話,CCITT規定抽樣率為8KHz,每抽樣值編8位碼,即共有2∧8=256個量化值,因而每話路PCM編碼後的標准數碼率是64kb/s。為解決均勻量化時小信號量化誤差大,音質差的問題,在實際中採用不均勻選取量化間隔的非線性量化方法,即量化特性在小信號時分層密,量化間隔小,而在大信號時分層疏,量化間隔大。
在實際中使用的是兩種對數形式的壓縮特性:A律和μ律,A律編碼主要用於30/32路一次群系統,μ律編碼主要用於24路一次群系統。A律PCM用於歐洲和中國,μ律PCM用於北美和日本。
❻ 敘述pcm編解碼的基本步驟 敘述pcm的優缺點 量化有沒有反變換
1敘述PCM編解碼的基本步驟
采樣——量化——編碼
2量化有沒有反變換?對通信有何影響?從實驗中看對波形影響有多大?
量化會導致SNR損失,是無法恢復的。實際使用的反變換都是有誤差的。
3PCM通信中為什麼需要同步?需要哪些同步?實驗中可不可以省去同步過程?
使PCM通信系統中發、收兩端的定時脈沖在時間上一致起來;
需要位同步、幀同步; 不可以。
4對PCM可有什麼改進,舉出改進方式的例子
PCM容易利用采樣中多餘度的編碼方案將使語音信號的碼率降低。 一種簡單的解決方法就是對相鄰樣本之差編碼而不是對樣本本身編碼,由於相鄰樣本之差比實際樣本幅度小,所以表示差信號需要較小的位數。這種普通方法的一種改進方案是用前面的n個樣本根據一定的規律來預測當前的樣本,然後將預測值與實際值的誤差進行量化後傳輸,在根據誤差信號,採用和發送端相同的預測方法恢復出原始信號。
❼ pcm編碼的編碼過程
模擬信號數字化必須經過三個過程,即抽樣、量化和編碼,以實現話音數字化的脈沖編碼調制技術。
具體介紹:
1、抽樣
抽樣是把模擬信號以其信號帶寬2倍以上的頻率提取樣值,變為在時間軸上離散的抽樣信號的過程。例如,話音信號帶寬被限制在0.3~3.4kHz內,用 8kHz的抽樣頻率(fs),就可獲得能取代原來連續話音信號的抽樣信號。
2、量化
抽樣信號雖然是時間軸上離散的信號,但仍然是模擬信號,其樣值在一定的取值范圍內,可有無限多個值。顯然,對無限個樣值一一給出數字碼組來對應是不可能的。
為了實現以數字碼表示樣值,必須採用「四捨五入」的方法把樣值分級「取整」,使一定取值范圍內的樣值由無限多個值變為有限個值。這一過程稱為量化。
3、編碼
量化後的抽樣信號在一定的取值范圍內僅有有限個可取的樣值,且信號正、負幅度分布的對稱性使正、負樣值的個數相等,正、負向的量化級對稱分布。
若將有限個 量化樣值的絕對值從小到大依次排列,並對應地依次賦予一個十進制數字代碼(例如,賦予樣值0的十進制數字代碼為0),在碼前以「+」、「-」號為前綴,來 區分樣值的正、負,則量化後的抽樣信號就轉化為按抽樣時序排列的一串十進制數字碼流,即十進制數字信號。
簡單高效的數據系統是二進制碼系統,因此,應將十 進制數字代碼變換成二進制編碼。根據十進制數字代碼的總個數,可以確定所需二進制編碼的位數,即字長。這種把量化的抽樣信號變換成給定字長的二進制碼流的過程稱為編碼。
注意:
在計算機應用中,能夠達到最高保真水平的就是PCM編碼,被廣泛用於素材保存及音樂欣賞,CD、DVD以及我們常見的 WAV文件中均有應用。
因此,PCM約定俗成了無損編碼,因為PCM代表了數字音頻中最佳的保真水準,並不意味著PCM就能夠確保信號絕對保真,PCM也只能做到最大程度的無限接近。要算一個PCM音頻流的碼率是一件很輕松的事情,采樣率值×采樣大小值×聲道數 bps。
一個采樣率為44.1KHz,采樣大小為16bit,雙聲道的PCM編碼的WAV文件,它的數據速率則為 44.1K×16×2 =1411.2 Kbps。我們常見的Audio CD就採用了PCM編碼,一張光碟的容量只能容納72分鍾的音樂信息。
❽ PCM編解碼系統由哪些部分構成各部分的作用是什麼
PCM
編解碼系統由哪些部分構成
?
各部分的作用是什麼
?
回答:
其中,低通濾波器:把話音信號帶寬限制為
3.4KHz
,把高於這個頻率的信號過濾掉。
抽樣:
對模擬信號以其信號帶寬
2
倍以上的頻率進行周期性的掃描,
把時間上連續的信號變
成時間上離散的信號。
量化:把經抽樣得到的瞬時值進行幅度離散化,即指定
M
個規定的電平,把抽樣值用最接
近的電平標示。
編碼:用二進制碼組表示有固定電平的量化值。
解碼:與編碼器的作用相反,把收到的
PCM
信號還原成相應的
PAM
信號,實現數模變換